aisrini's picture
Update README.md
91126b5 verified

A newer version of the Gradio SDK is available: 6.1.0

Upgrade
metadata
title: Intelligent Documentation Generator Agent
colorFrom: blue
colorTo: purple
sdk: gradio
python_version: 3.11
sdk_version: 5.49.1
app_file: app.py
short_description: Generate documentation and chat with code
tags:
  - documentation
  - code-assistant
  - large-language-model
  - fire-works-ai
models:
  - accounts/fireworks/models/glm-4p6
pinned: false

๐Ÿง  Intelligent Documentation Generator Agent

Built with GLM-4.6 on Fireworks AI and Gradio


๐Ÿ“˜ Overview

The Intelligent Documentation Generator Agent automatically generates structured, multi-layer documentation and provides a chat interface to explore Python codebases. This version is powered by GLM-4.6 via the Fireworks AI Inference API and implemented in Gradio, offering a lightweight, interactive browser-based UI.

Capabilities:

  • Analyze Python files from uploads, pasted code, or GitHub links
  • Generate consistent, well-structured documentation (overview, API breakdown, usage examples)
  • Chat directly with your code to understand logic, dependencies, and optimization opportunities

โš™๏ธ Architecture

User (Upload / Paste / GitHub)
          โ”‚
          โ–ผ
   Gradio UI (Tabs)
 โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
 โ”‚  Documentation Tab  โ”‚โ”€โ”€โ–บ Fireworks GLM-4.6 โ†’ Markdown Docs
 โ”‚  Chat Tab            โ”‚โ”€โ”€โ–บ Fireworks GLM-4.6 โ†’ Q&A Responses
 โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿงฉ Core Features

๐Ÿ“„ Documentation Generator

  • Input via:

    • Pasted Python code
    • Uploaded .py file
    • GitHub file link (supports automatic conversion to raw URL)
  • Produces:

    • Overview and purpose
    • Key functions/classes with signatures
    • Dependencies and relationships
    • Example usage and improvement suggestions
  • Outputs documentation in Markdown

๐Ÿ’ฌ Code Chatbot

  • Conversational Q&A with the analyzed code
  • References exact functions and dependencies
  • Maintains interactive chat history using Gradioโ€™s Chatbot component
  • Uses the same GLM-4.6 model context for accurate answers

๐Ÿงฑ Tech Stack

Layer Technology
Model GLM-4.6 on Fireworks AI
UI Framework Gradio
Language Python 3.9+
HTTP Requests requests
Deployment Localhost / Containerized environments

๐Ÿš€ Installation

1. Clone the Repository

git clone https://github.com/<your-username>/intelligent-doc-agent.git
cd intelligent-doc-agent

2. Install Dependencies

pip install gradio requests

3. Configure Fireworks API Key

Set your API key as an environment variable:

export FIREWORKS_API_KEY="your_fireworks_api_key"

Alternatively, enter your API key directly in the UI when prompted.

4. Run the Application

python app_gradio.py

Then visit http://127.0.0.1:7860 in your browser.


๐Ÿ’ก Usage Guide

๐Ÿง  Generate Documentation

  1. Open the ๐Ÿ“„ Generate Documentation tab.

  2. Choose an input mode:

    • Paste code into the text area
    • Upload a .py file
    • Enter a GitHub file link (e.g., https://github.com/.../file.py)
  3. Click ๐Ÿš€ Generate Documentation to process your file.

  4. View formatted Markdown output instantly.

๐Ÿ’ฌ Chat with Code

  1. Switch to the ๐Ÿ’ฌ Chat with Code tab.
  2. Ask questions about your code (e.g., โ€œWhat does this function do?โ€ or โ€œHow can I improve performance?โ€).
  3. The model responds contextually, referencing the uploaded file.

๐Ÿง  Model Integration Example

payload = {
  "model": "accounts/fireworks/models/glm-4p6",
  "max_tokens": 4096,
  "temperature": 0.6,
  "messages": messages
}
response = requests.post(
  "https://api.fireworks.ai/inference/v1/chat/completions",
  headers={"Authorization": f"Bearer {FIREWORKS_API_KEY}"},
  data=json.dumps(payload)
)
print(response.json()["choices"][0]["message"]["content"])

๐Ÿ“ฆ Project Structure

.
โ”œโ”€โ”€ app.py          # Main Gradio interface
โ”œโ”€โ”€ README.md              # Project documentation
โ””โ”€โ”€ requirements.txt       # Dependencies (gradio, requests)

๐Ÿ”ฎ Future Enhancements

  • Multi-file repository analysis with hierarchical context summarization
  • Semantic vector store (Chroma / Pinecone) for persistent knowledge retrieval
  • Multi-agent orchestration using LangGraph or MCP protocols
  • Continuous documentation updates via Git hooks or CI/CD pipelines

๐Ÿงพ Example

Input

def calculate_mean(numbers):
    return sum(numbers) / len(numbers)

Output

### Function: calculate_mean
Computes the arithmetic mean of a numeric list.

**Parameters:**
- numbers (list): Sequence of numbers to average.

**Returns:**
- float: Mean of the list.

**Usage Example:**
>>> calculate_mean([1, 2, 3, 4])
2.5

Chat Example

โ€œHow can I modify this to avoid division by zero errors?โ€


๐Ÿ” Best Practices

  • Use raw GitHub links (https://raw.githubusercontent.com/...) for accurate file fetches.
  • Limit input size (~4k tokens) for optimal latency and context accuracy.
  • Keep your API key private โ€” never commit it in source files.

๐Ÿงญ License

Released under