File size: 5,634 Bytes
1fc9fca
00be157
 
 
 
91126b5
00be157
f06a89b
00be157
1fc9fca
00be157
 
 
 
1fc9fca
00be157
1fc9fca
 
 
 
 
606a35d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2b77
606a35d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2b77
 
606a35d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3cfc5d
606a35d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00be157
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
---
title: Intelligent Documentation Generator Agent
colorFrom: blue
colorTo: purple
sdk: gradio
python_version: 3.11
sdk_version: 5.49.1
app_file: app.py
short_description: Generate documentation and chat with code
tags:
- documentation
- code-assistant
- large-language-model
- fire-works-ai
models:
- accounts/fireworks/models/glm-4p6
pinned: false
---



# ๐Ÿง  Intelligent Documentation Generator Agent

Built with **GLM-4.6 on Fireworks AI** and **Gradio**

---

## ๐Ÿ“˜ Overview

The **Intelligent Documentation Generator Agent** automatically generates structured, multi-layer documentation and provides a chat interface to explore Python codebases.
This version is powered by **GLM-4.6** via the **Fireworks AI Inference API** and implemented in **Gradio**, offering a lightweight, interactive browser-based UI.

**Capabilities:**

* Analyze Python files from uploads, pasted code, or GitHub links
* Generate consistent, well-structured documentation (overview, API breakdown, usage examples)
* Chat directly with your code to understand logic, dependencies, and optimization opportunities

---

## โš™๏ธ Architecture

```
User (Upload / Paste / GitHub)
          โ”‚
          โ–ผ
   Gradio UI (Tabs)
 โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
 โ”‚  Documentation Tab  โ”‚โ”€โ”€โ–บ Fireworks GLM-4.6 โ†’ Markdown Docs
 โ”‚  Chat Tab            โ”‚โ”€โ”€โ–บ Fireworks GLM-4.6 โ†’ Q&A Responses
 โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
```

---

## ๐Ÿงฉ Core Features

### ๐Ÿ“„ Documentation Generator

* Input via:

  * Pasted Python code
  * Uploaded `.py` file
  * GitHub file link (supports automatic conversion to raw URL)
* Produces:

  * Overview and purpose
  * Key functions/classes with signatures
  * Dependencies and relationships
  * Example usage and improvement suggestions
* Outputs documentation in Markdown

### ๐Ÿ’ฌ Code Chatbot

* Conversational Q&A with the analyzed code
* References exact functions and dependencies
* Maintains interactive chat history using Gradioโ€™s `Chatbot` component
* Uses the same GLM-4.6 model context for accurate answers

---

## ๐Ÿงฑ Tech Stack

| Layer             | Technology                                      |
| ----------------- | ----------------------------------------------- |
| **Model**         | [GLM-4.6](https://fireworks.ai) on Fireworks AI |
| **UI Framework**  | [Gradio](https://gradio.app)                    |
| **Language**      | Python 3.9+                                     |
| **HTTP Requests** | `requests`                                      |
| **Deployment**    | Localhost / Containerized environments          |

---

## ๐Ÿš€ Installation

### 1. Clone the Repository

```bash
git clone https://github.com/<your-username>/intelligent-doc-agent.git
cd intelligent-doc-agent
```

### 2. Install Dependencies

```bash
pip install gradio requests
```

### 3. Configure Fireworks API Key

Set your API key as an environment variable:

```bash
export FIREWORKS_API_KEY="your_fireworks_api_key"
```

> Alternatively, enter your API key directly in the UI when prompted.

### 4. Run the Application

```bash
python app_gradio.py
```

Then visit **[http://127.0.0.1:7860](http://127.0.0.1:7860)** in your browser.

---

## ๐Ÿ’ก Usage Guide

### ๐Ÿง  Generate Documentation

1. Open the **๐Ÿ“„ Generate Documentation** tab.
2. Choose an input mode:

   * Paste code into the text area
   * Upload a `.py` file
   * Enter a GitHub file link (e.g., `https://github.com/.../file.py`)
3. Click **๐Ÿš€ Generate Documentation** to process your file.
4. View formatted Markdown output instantly.

### ๐Ÿ’ฌ Chat with Code

1. Switch to the **๐Ÿ’ฌ Chat with Code** tab.
2. Ask questions about your code (e.g., โ€œWhat does this function do?โ€ or โ€œHow can I improve performance?โ€).
3. The model responds contextually, referencing the uploaded file.

---

## ๐Ÿง  Model Integration Example

```python
payload = {
  "model": "accounts/fireworks/models/glm-4p6",
  "max_tokens": 4096,
  "temperature": 0.6,
  "messages": messages
}
response = requests.post(
  "https://api.fireworks.ai/inference/v1/chat/completions",
  headers={"Authorization": f"Bearer {FIREWORKS_API_KEY}"},
  data=json.dumps(payload)
)
print(response.json()["choices"][0]["message"]["content"])
```

---

## ๐Ÿ“ฆ Project Structure

```
.
โ”œโ”€โ”€ app.py          # Main Gradio interface
โ”œโ”€โ”€ README.md              # Project documentation
โ””โ”€โ”€ requirements.txt       # Dependencies (gradio, requests)
```

---

## ๐Ÿ”ฎ Future Enhancements

* **Multi-file repository analysis** with hierarchical context summarization
* **Semantic vector store** (Chroma / Pinecone) for persistent knowledge retrieval
* **Multi-agent orchestration** using LangGraph or MCP protocols
* **Continuous documentation updates** via Git hooks or CI/CD pipelines

---

## ๐Ÿงพ Example

**Input**

```python
def calculate_mean(numbers):
    return sum(numbers) / len(numbers)
```

**Output**

```markdown
### Function: calculate_mean
Computes the arithmetic mean of a numeric list.

**Parameters:**
- numbers (list): Sequence of numbers to average.

**Returns:**
- float: Mean of the list.

**Usage Example:**
>>> calculate_mean([1, 2, 3, 4])
2.5
```

**Chat Example**

> โ€œHow can I modify this to avoid division by zero errors?โ€

---

## ๐Ÿ” Best Practices

* Use **raw GitHub links** (`https://raw.githubusercontent.com/...`) for accurate file fetches.
* Limit input size (~4k tokens) for optimal latency and context accuracy.
* Keep your **API key** private โ€” never commit it in source files.

---

## ๐Ÿงญ License

Released under