ACT Policy for ALOHA Simulation
This policy was trained using Imitation Learning (behavior cloning) on the ALOHA simulation dataset.
Model Details
- Policy Type: ACT (Action Chunking Transformer)
- Architecture: CNN encoder + Transformer decoder
- State Dimension: 14 (bimanual robot joints)
- Action Dimension: 14
- Action Chunk Size: 50
- Hidden Dimension: 512
- Transformer Layers: 6
- Training Epochs: 6
- Best Training Loss: 0.0008
Training Dataset
- Dataset: nock0912/aloha_sim_cube_dataset
- Environment: gym_aloha/AlohaTransferCube-v0
- Task: Transfer cube from one location to another
Usage
import torch
from train_act_policy import SimpleACTPolicy
# Load model
model = SimpleACTPolicy(
state_dim=14,
action_dim=14,
hidden_dim=512,
chunk_size=50,
n_heads=8,
n_layers=6
)
model.load_state_dict(torch.load("model.pt"))
model.eval()
# Inference
with torch.no_grad():
actions = model(images, states) # Returns 50 future actions
Citation
If you use this policy, please cite the LeRobot project.
- Downloads last month
- -