ACT Policy for ALOHA Simulation

This policy was trained using Imitation Learning (behavior cloning) on the ALOHA simulation dataset.

Model Details

  • Policy Type: ACT (Action Chunking Transformer)
  • Architecture: CNN encoder + Transformer decoder
  • State Dimension: 14 (bimanual robot joints)
  • Action Dimension: 14
  • Action Chunk Size: 50
  • Hidden Dimension: 512
  • Transformer Layers: 6
  • Training Epochs: 6
  • Best Training Loss: 0.0008

Training Dataset

Usage

import torch
from train_act_policy import SimpleACTPolicy

# Load model
model = SimpleACTPolicy(
    state_dim=14,
    action_dim=14,
    hidden_dim=512,
    chunk_size=50,
    n_heads=8,
    n_layers=6
)
model.load_state_dict(torch.load("model.pt"))
model.eval()

# Inference
with torch.no_grad():
    actions = model(images, states)  # Returns 50 future actions

Citation

If you use this policy, please cite the LeRobot project.

Downloads last month
-
Video Preview
loading