Datasets:

ArXiv:
OpenOCR / docs /unirec.md
dlxj
init
82de705

UniRec-0.1B: Unified Text and Formula Recognition with 0.1B Parameters

[Paper] [ModelScope Model] [HuggingFace Model] [ModelScope Demo] [Hugging Face Demo] [Local Demo]

Introduction

UniRec is good at recognizing plain text (words, lines, paragraphs), formulas (single-line, multi-line), and mixed text-and-formulas content. You only need to use a screenshot tool to select the text area from a paper and paste it into the [ModelScope Demo] or [Hugging Face Demo]. After clicking Run, the recognition will be completed automatically

Get Started with the UniRec

Dependencies:

  • PyTorch version >= 1.13.0
  • Python version >= 3.7
conda create -n openocr python==3.9
conda activate openocr
# install gpu version torch >=1.13.0
conda install pytorch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 pytorch-cuda=11.8 -c pytorch -c nvidia
# or cpu version
conda install pytorch torchvision torchaudio cpuonly -c pytorch
git clone https://github.com/Topdu/OpenOCR.git

Downloding the UniRec Model from ModelScope or Hugging Face

cd OpenOCR
pip install -r requirements.txt
# download model from modelscope
modelscope download topdktu/unirec-0.1b --local_dir ./unirec-0.1b
# or download model from huggingface
huggingface-cli download topdu/unirec-0.1b --local-dir ./unirec-0.1b

Inference

python tools/infer_rec.py --c ./configs/rec/unirec/focalsvtr_ardecoder_unirec.yml --o Global.infer_img=/path/img_fold or /path/img_file

Local Demo

pip install gradio==4.20.0
python demo_unirec.py

Citation

If you find our method useful for your research, please cite:

@article{du2025unirec,
  title={UniRec-0.1B: Unified Text and Formula Recognition with 0.1B Parameters},
  author={Yongkun Du and Zhineng Chen and Yazhen Xie and Weikang Bai and Hao Feng and Wei Shi and Yuchen Su and Can Huang and Yu-Gang Jiang},
  journal={arXiv preprint arXiv:2512.21095},
  year={2025}
}