# UniRec-0.1B: Unified Text and Formula Recognition with 0.1B Parameters \[[Paper](https://arxiv.org/pdf/2512.21095)\] \[[ModelScope Model](https://www.modelscope.cn/models/topdktu/unirec-0.1b)\] \[[HuggingFace Model](https://huggingface.co/topdu/unirec-0.1b)\] \[[ModelScope Demo](https://www.modelscope.cn/studios/topdktu/OpenOCR-UniRec-Demo)\] \[[Hugging Face Demo](https://huggingface.co/spaces/topdu/OpenOCR-UniRec-Demo)\] \[[Local Demo](#local-demo)\] ## Introduction **UniRec** is good at recognizing plain text (words, lines, paragraphs), formulas (single-line, multi-line), and mixed text-and-formulas content. You only need to use a screenshot tool to select the text area from a paper and paste it into the \[[ModelScope Demo](https://www.modelscope.cn/studios/topdktu/OpenOCR-UniRec-Demo)\] or \[[Hugging Face Demo](https://huggingface.co/spaces/topdu/OpenOCR-UniRec-Demo)\]. After clicking Run, the recognition will be completed automatically ## Get Started with the UniRec ### Dependencies: - [PyTorch](http://pytorch.org/) version >= 1.13.0 - Python version >= 3.7 ```shell conda create -n openocr python==3.9 conda activate openocr # install gpu version torch >=1.13.0 conda install pytorch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 pytorch-cuda=11.8 -c pytorch -c nvidia # or cpu version conda install pytorch torchvision torchaudio cpuonly -c pytorch git clone https://github.com/Topdu/OpenOCR.git ``` ### Downloding the UniRec Model from ModelScope or Hugging Face ```shell cd OpenOCR pip install -r requirements.txt # download model from modelscope modelscope download topdktu/unirec-0.1b --local_dir ./unirec-0.1b # or download model from huggingface huggingface-cli download topdu/unirec-0.1b --local-dir ./unirec-0.1b ``` ### Inference ```shell python tools/infer_rec.py --c ./configs/rec/unirec/focalsvtr_ardecoder_unirec.yml --o Global.infer_img=/path/img_fold or /path/img_file ``` ### Local Demo ```shell pip install gradio==4.20.0 python demo_unirec.py ``` ## Citation If you find our method useful for your research, please cite: ```bibtex @article{du2025unirec, title={UniRec-0.1B: Unified Text and Formula Recognition with 0.1B Parameters}, author={Yongkun Du and Zhineng Chen and Yazhen Xie and Weikang Bai and Hao Feng and Wei Shi and Yuchen Su and Can Huang and Yu-Gang Jiang}, journal={arXiv preprint arXiv:2512.21095}, year={2025} } ```