Leveraging Vision-Language Models for Visual Grounding and Analysis of Automotive UI
Paper
•
2505.05895
•
Published
ELAM (Evaluative Large Action Model) is a Molmo 7B-D-based LAM (Large Action Model) that is also able to evaluate user expectations on screenshots of user interfaces. It was specifically fine-tuned on 17,708 instructions and evaluations for 6,230 automotive UI images. The images contained German and English text. All training prompts were English. German content was either translated or quoted directly.
The evaluation dataset AutomotiveUI-Bench-4K is available on Hugging Face.
| Model | Test Action Grounding | Expected Result Grounding | Expected Result Evaluation |
|---|---|---|---|
| InternVL2.5-8B | 26.6 | 5.7 | 64.8 |
| TinyClick | 61.0 | 54.6 | - |
| UGround-V1-7B (Qwen2-VL) | 69.4 | 55.0 | - |
| Molmo-7B-D-0924 | 71.3 | 71.4 | 66.9 |
| LAM-270M (TinyClick) | 73.9 | 59.9 | - |
| ELAM-7B (Molmo) | 87.6 | 77.5 | 78.2 |
conda create -n elam python=3.10 -y
conda activate elam
pip install datasets==3.5.0 einops==0.8.1 torchvision==0.20.1 accelerate==1.6.0
pip install transformers==4.48.2
import re
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
# Load processor
model_name = "sparks-solutions/ELAM-7B"
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto")
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_name, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto"
)
def preprocess_elam_prompt(user_request: str, label_class: str):
"""Apply ELAM prompt template depending on class."""
if label_class == "Expected Result":
return f"Evaluate this statement about the image:\n'{user_request}'\nThink step by step, conclude whether the evaluation is 'PASSED' or 'FAILED' and point to the UI element that corresponds to this evaluation."
elif label_class == "Test Action":
return f"Identify and point to the UI element that corresponds to this test action:\n{user_request}"
def postprocess_response_elam(response: str):
"""Parse Molmo-style point coordinates from string and return tuple of floats in [0-1]."""
pattern = r'<point x="(?P<x>\d+\.\d+)" y="(?P<y>\d+\.\d+)"'
match = re.search(pattern, response)
if match:
x_coord_raw = float(match.group("x"))
y_coord_raw = float(match.group("y"))
x_coord = x_coord_raw / 100
y_coord = y_coord_raw / 100
return [x_coord, y_coord]
else:
return [-1, -1]
Two prompt types were fine-tuned for UI testing:
image_path = "path/to/your/ui/image"
user_request = "Tap home button" # or "The home icon is white"
request_type = "Test Action" # or "Expected Result"
image = Image.open(image_path)
elam_prompt = preprocess_elam_prompt(user_request, request_type)
inputs = processor.process(
images=[image],
text=elam_prompt,
)
# Move inputs to the correct device and make a batch of size 1, cast to bfloat16
inputs_bfloat16 = {}
for k, v in inputs.items():
if v.dtype == torch.float32:
inputs_bfloat16[k] = v.to(model.device).to(torch.bfloat16).unsqueeze(0)
else:
inputs_bfloat16[k] = v.to(model.device).unsqueeze(0)
inputs = inputs_bfloat16 # Replace original inputs with the correctly typed inputs
# Generate output
output = model.generate_from_batch(
inputs, GenerationConfig(max_new_tokens=2048, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer
)
# Only get generated tokens; decode them to text
generated_tokens = output[0, inputs["input_ids"].size(1) :]
response = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
coordinates = postprocess_response_elam(response)
# Print outputs
print(f"ELAM response: {response}")
print(f"Got coordinates: {coordinates}")
If you find ELAM useful in your research, please cite the following paper:
@misc{ernhofer2025leveragingvisionlanguagemodelsvisual,
title={Leveraging Vision-Language Models for Visual Grounding and Analysis of Automotive UI},
author={Benjamin Raphael Ernhofer and Daniil Prokhorov and Jannica Langner and Dominik Bollmann},
year={2025},
eprint={2505.05895},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2505.05895},
}
This work was supported by German BMBF within the scope of project "KI4BoardNet".