Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -73,6 +73,24 @@ def ocr_with_tesseract(img):
|
|
| 73 |
confidences = [1.0] * len(extracted_text) # Tesseract doesn't return confidence scores
|
| 74 |
return extracted_text, confidences
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
# OCR & Classification Function
|
| 77 |
def generate_ocr(method, img):
|
| 78 |
if img is None:
|
|
@@ -83,57 +101,33 @@ def generate_ocr(method, img):
|
|
| 83 |
|
| 84 |
# Select OCR method
|
| 85 |
if method == "PaddleOCR":
|
| 86 |
-
|
| 87 |
elif method == "EasyOCR":
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
elif method == "TesseractOCR":
|
| 92 |
-
extracted_text, _ = ocr_with_tesseract(img) # Ignore confidence values
|
| 93 |
-
else:
|
| 94 |
-
return "Invalid OCR method", "N/A"
|
| 95 |
-
|
| 96 |
-
# Clean text
|
| 97 |
-
extracted_text = extracted_text.strip()
|
| 98 |
-
if not extracted_text:
|
| 99 |
-
return "No text detected!", "Cannot classify"
|
| 100 |
|
| 101 |
-
#
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
inputs = tokenizer(
|
| 106 |
-
extracted_text,
|
| 107 |
-
return_tensors="pt",
|
| 108 |
-
truncation=True,
|
| 109 |
-
padding="max_length",
|
| 110 |
-
max_length=512
|
| 111 |
-
)
|
| 112 |
|
| 113 |
-
#
|
| 114 |
-
inputs =
|
| 115 |
|
| 116 |
# Perform inference
|
| 117 |
with torch.no_grad():
|
| 118 |
outputs = model(**inputs)
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
# Debugging: Print logits
|
| 122 |
-
print(f"Logits: {logits}")
|
| 123 |
-
|
| 124 |
-
# Use argmax to classify
|
| 125 |
-
predicted_class = torch.argmax(logits, dim=1).item()
|
| 126 |
-
label_map = {0: "Not Spam", 1: "Spam"}
|
| 127 |
-
label = label_map.get(predicted_class, "Unknown")
|
| 128 |
-
|
| 129 |
-
# Debugging: Print final classification
|
| 130 |
-
print(f"Predicted Class: {predicted_class}, Label: {label}")
|
| 131 |
|
| 132 |
-
#
|
| 133 |
-
|
| 134 |
|
| 135 |
-
|
|
|
|
| 136 |
|
|
|
|
| 137 |
|
| 138 |
# Gradio Interface
|
| 139 |
image_input = gr.Image()
|
|
|
|
| 73 |
confidences = [1.0] * len(extracted_text) # Tesseract doesn't return confidence scores
|
| 74 |
return extracted_text, confidences
|
| 75 |
|
| 76 |
+
# OCR & Classification Function
|
| 77 |
+
def ocr_with_paddle(img):
|
| 78 |
+
ocr = PaddleOCR(lang='en', use_angle_cls=True)
|
| 79 |
+
result = ocr.ocr(img)
|
| 80 |
+
return ' '.join([item[1][0] for item in result[0]])
|
| 81 |
+
|
| 82 |
+
def ocr_with_keras(img):
|
| 83 |
+
pipeline = keras_ocr.pipeline.Pipeline()
|
| 84 |
+
images = [keras_ocr.tools.read(img)]
|
| 85 |
+
predictions = pipeline.recognize(images)
|
| 86 |
+
return ' '.join([text for text, _ in predictions[0]])
|
| 87 |
+
|
| 88 |
+
def ocr_with_easy(img):
|
| 89 |
+
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 90 |
+
reader = easyocr.Reader(['en'])
|
| 91 |
+
results = reader.readtext(gray_image, detail=0)
|
| 92 |
+
return ' '.join(results)
|
| 93 |
+
|
| 94 |
# OCR & Classification Function
|
| 95 |
def generate_ocr(method, img):
|
| 96 |
if img is None:
|
|
|
|
| 101 |
|
| 102 |
# Select OCR method
|
| 103 |
if method == "PaddleOCR":
|
| 104 |
+
text_output = ocr_with_paddle(img)
|
| 105 |
elif method == "EasyOCR":
|
| 106 |
+
text_output = ocr_with_easy(img)
|
| 107 |
+
else: # KerasOCR
|
| 108 |
+
text_output = ocr_with_keras(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
# Preprocess text properly
|
| 111 |
+
text_output = text_output.strip()
|
| 112 |
+
if len(text_output) == 0:
|
| 113 |
+
return "No text detected!", "Cannot classify"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
# Tokenize text
|
| 116 |
+
inputs = tokenizer(text_output, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 117 |
|
| 118 |
# Perform inference
|
| 119 |
with torch.no_grad():
|
| 120 |
outputs = model(**inputs)
|
| 121 |
+
probs = F.softmax(outputs.logits, dim=1) # Convert logits to probabilities
|
| 122 |
+
spam_prob = probs[0][1].item() # Probability of Spam
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
+
# Adjust classification based on threshold (better than argmax)
|
| 125 |
+
label = "Spam" if spam_prob > 0.5 else "Not Spam"
|
| 126 |
|
| 127 |
+
# Save results using external function
|
| 128 |
+
save_results_to_repo(text_output, label)
|
| 129 |
|
| 130 |
+
return text_output, label
|
| 131 |
|
| 132 |
# Gradio Interface
|
| 133 |
image_input = gr.Image()
|