Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -83,43 +83,57 @@ def generate_ocr(method, img):
|
|
| 83 |
|
| 84 |
# Select OCR method
|
| 85 |
if method == "PaddleOCR":
|
| 86 |
-
|
| 87 |
elif method == "EasyOCR":
|
| 88 |
-
|
| 89 |
elif method == "KerasOCR":
|
| 90 |
-
|
| 91 |
elif method == "TesseractOCR":
|
| 92 |
-
|
| 93 |
else:
|
| 94 |
return "Invalid OCR method", "N/A"
|
| 95 |
|
| 96 |
-
# Clean
|
| 97 |
-
|
| 98 |
-
if
|
| 99 |
return "No text detected!", "Cannot classify"
|
| 100 |
|
| 101 |
-
#
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
# Perform inference
|
| 105 |
with torch.no_grad():
|
| 106 |
outputs = model(**inputs)
|
| 107 |
-
logits = outputs.logits
|
| 108 |
|
| 109 |
-
# Debugging: Print
|
| 110 |
-
print(f"
|
| 111 |
|
| 112 |
-
# Use
|
| 113 |
predicted_class = torch.argmax(logits, dim=1).item()
|
| 114 |
-
|
| 115 |
-
# Map class index to labels
|
| 116 |
label_map = {0: "Not Spam", 1: "Spam"}
|
| 117 |
label = label_map.get(predicted_class, "Unknown")
|
| 118 |
|
|
|
|
|
|
|
|
|
|
| 119 |
# Save results
|
| 120 |
-
save_results_to_repo(
|
|
|
|
|
|
|
| 121 |
|
| 122 |
-
return text_output, label
|
| 123 |
|
| 124 |
# Gradio Interface
|
| 125 |
image_input = gr.Image()
|
|
|
|
| 83 |
|
| 84 |
# Select OCR method
|
| 85 |
if method == "PaddleOCR":
|
| 86 |
+
extracted_text = ocr_with_paddle(img)
|
| 87 |
elif method == "EasyOCR":
|
| 88 |
+
extracted_text = ocr_with_easy(img)
|
| 89 |
elif method == "KerasOCR":
|
| 90 |
+
extracted_text = ocr_with_keras(img)
|
| 91 |
elif method == "TesseractOCR":
|
| 92 |
+
extracted_text, _ = ocr_with_tesseract(img) # Ignore confidence values
|
| 93 |
else:
|
| 94 |
return "Invalid OCR method", "N/A"
|
| 95 |
|
| 96 |
+
# Clean text
|
| 97 |
+
extracted_text = extracted_text.strip()
|
| 98 |
+
if not extracted_text:
|
| 99 |
return "No text detected!", "Cannot classify"
|
| 100 |
|
| 101 |
+
# Debugging: Print extracted text
|
| 102 |
+
print(f"Extracted Text: {extracted_text}")
|
| 103 |
+
|
| 104 |
+
# Tokenize input
|
| 105 |
+
inputs = tokenizer(
|
| 106 |
+
extracted_text,
|
| 107 |
+
return_tensors="pt",
|
| 108 |
+
truncation=True,
|
| 109 |
+
padding="max_length",
|
| 110 |
+
max_length=512
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Move tensors to the same device as the model
|
| 114 |
+
inputs = {key: val.to(model.device) for key, val in inputs.items()}
|
| 115 |
|
| 116 |
# Perform inference
|
| 117 |
with torch.no_grad():
|
| 118 |
outputs = model(**inputs)
|
| 119 |
+
logits = outputs.logits
|
| 120 |
|
| 121 |
+
# Debugging: Print logits
|
| 122 |
+
print(f"Logits: {logits}")
|
| 123 |
|
| 124 |
+
# Use argmax to classify
|
| 125 |
predicted_class = torch.argmax(logits, dim=1).item()
|
|
|
|
|
|
|
| 126 |
label_map = {0: "Not Spam", 1: "Spam"}
|
| 127 |
label = label_map.get(predicted_class, "Unknown")
|
| 128 |
|
| 129 |
+
# Debugging: Print final classification
|
| 130 |
+
print(f"Predicted Class: {predicted_class}, Label: {label}")
|
| 131 |
+
|
| 132 |
# Save results
|
| 133 |
+
save_results_to_repo(extracted_text, label)
|
| 134 |
+
|
| 135 |
+
return extracted_text, label
|
| 136 |
|
|
|
|
| 137 |
|
| 138 |
# Gradio Interface
|
| 139 |
image_input = gr.Image()
|