|
|
from dataclasses import dataclass |
|
|
from typing import Any, Dict, List, Optional, Tuple, Union, Callable |
|
|
from tqdm import tqdm |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
|
|
|
from transformers.models.auto import AutoModel, AutoModelForCausalLM |
|
|
|
|
|
from transformers.generation import GenerationMixin, GenerationConfig, LogitsProcessor, LogitsProcessorList, StoppingCriteriaList |
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput |
|
|
from transformers import modeling_utils |
|
|
from transformers.modeling_utils import PreTrainedModel |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.utils import logging |
|
|
|
|
|
from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache |
|
|
from .modular_vibevoice_diffusion_head import VibeVoiceDiffusionHead |
|
|
from vibevoice.schedule.dpm_solver import DPMSolverMultistepScheduler |
|
|
from .configuration_vibevoice_streaming import VibeVoiceStreamingConfig |
|
|
from .modular_vibevoice_text_tokenizer import VibeVoiceTextTokenizer, VibeVoiceTextTokenizerFast |
|
|
from .modeling_vibevoice_streaming import VibeVoiceStreamingPreTrainedModel, VibeVoiceStreamingModel, BinaryClassifier |
|
|
from .streamer import AudioStreamer, AsyncAudioStreamer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None: |
|
|
modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", "rowwise"] |
|
|
|
|
|
TTS_TEXT_WINDOW_SIZE = 5 |
|
|
TTS_SPEECH_WINDOW_SIZE = 6 |
|
|
|
|
|
|
|
|
def _update_model_kwargs_for_generation( |
|
|
outputs: ModelOutput, |
|
|
model_kwargs: Dict[str, Any], |
|
|
num_new_tokens: int = 1, |
|
|
) -> Dict[str, Any]: |
|
|
""" |
|
|
Update model_kwargs after adding new tokens. |
|
|
|
|
|
Mainly for the case num_new_tokens > 1 (e.g. a whole text window): |
|
|
- past_key_values: take from current outputs |
|
|
- attention_mask: append num_new_tokens ones |
|
|
- cache_position: advance by creating a range for all new positions |
|
|
""" |
|
|
|
|
|
|
|
|
model_kwargs["past_key_values"] = getattr(outputs, "past_key_values") |
|
|
|
|
|
attention_mask = model_kwargs["attention_mask"] |
|
|
model_kwargs["attention_mask"] = torch.cat( |
|
|
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], num_new_tokens))], dim=-1 |
|
|
) |
|
|
|
|
|
model_kwargs["cache_position"] = torch.arange(model_kwargs["cache_position"][-1] + 1, model_kwargs["cache_position"][-1] + num_new_tokens + 1).to(model_kwargs["cache_position"].device) |
|
|
|
|
|
return model_kwargs |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class VibeVoiceCausalLMOutputWithPast(BaseModelOutputWithPast): |
|
|
logits: Optional[torch.FloatTensor] = None |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class VibeVoiceGenerationOutput(ModelOutput): |
|
|
""" |
|
|
Output type for VibeVoice generation. |
|
|
|
|
|
Args: |
|
|
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
|
The generated sequences. |
|
|
speech_outputs (`List[torch.FloatTensor]`, *optional*): |
|
|
List of generated speech waveforms or latents for each speech segment. |
|
|
""" |
|
|
sequences: torch.LongTensor = None |
|
|
speech_outputs: Optional[List[torch.FloatTensor]] = None |
|
|
reach_max_step_sample: Optional[torch.BoolTensor] = None |
|
|
|
|
|
|
|
|
class VibeVoiceStreamingForConditionalGenerationInference(VibeVoiceStreamingPreTrainedModel, GenerationMixin): |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
|
|
|
|
|
|
self.model = VibeVoiceStreamingModel(config) |
|
|
|
|
|
|
|
|
self.tts_eos_classifier = BinaryClassifier(config.decoder_config.hidden_size) |
|
|
|
|
|
|
|
|
self.ddpm_inference_steps = config.diffusion_head_config.ddpm_num_inference_steps |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
@property |
|
|
def noise_scheduler(self): |
|
|
return self.model.noise_scheduler |
|
|
|
|
|
@property |
|
|
def prediction_head(self): |
|
|
return self.model.prediction_head |
|
|
|
|
|
@property |
|
|
def speech_scaling_factor(self): |
|
|
return self.model.speech_scaling_factor |
|
|
|
|
|
@property |
|
|
def speech_bias_factor(self): |
|
|
return self.model.speech_bias_factor |
|
|
|
|
|
@property |
|
|
def acoustic_tokenizer(self): |
|
|
return self.model.acoustic_tokenizer |
|
|
|
|
|
@property |
|
|
def acoustic_connector(self): |
|
|
return self.model.acoustic_connector |
|
|
|
|
|
def tie_weights(self): |
|
|
""" |
|
|
Tie the weights between the input embeddings and the output embeddings. |
|
|
""" |
|
|
|
|
|
if not getattr(self.config, 'tie_word_embeddings', False): |
|
|
return |
|
|
|
|
|
if hasattr(self, 'lm_head') and hasattr(self.model.language_model, 'embed_tokens'): |
|
|
self.lm_head.weight = self.model.language_model.embed_tokens.weight |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.get_input_embeddings() |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.set_input_embeddings(value) |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
""" |
|
|
This model does not define an `lm_head` (vocabulary projection). |
|
|
""" |
|
|
return None |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
""" |
|
|
No-op because there is no `lm_head`. Provided only to satisfy optional API calls. |
|
|
To enable, first create `self.lm_head` then allow assignment. |
|
|
""" |
|
|
raise RuntimeError("Output embeddings (lm_head) are not defined for this model. " |
|
|
"Create one before calling set_output_embeddings if needed.") |
|
|
|
|
|
def set_speech_tokenizers(self, acoustic_tokenizer=None): |
|
|
"""Set the speech tokenizers used for encoding and decoding speech.""" |
|
|
self.model.set_speech_tokenizers(acoustic_tokenizer) |
|
|
|
|
|
def set_ddpm_inference_steps(self, num_steps=None): |
|
|
self.ddpm_inference_steps = num_steps or self.config.diffusion_head_config.ddpm_num_inference_steps |
|
|
|
|
|
|
|
|
def forward_lm( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs, |
|
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
""" |
|
|
Single pass of the base text LM. |
|
|
|
|
|
- Builds embeddings if `inputs_embeds` not provided. |
|
|
- Uses (and returns) `past_key_values` when `use_cache=True`. |
|
|
- No loss / no lm_head / no speech logic. |
|
|
|
|
|
Args: |
|
|
input_ids: (B, S) token ids. |
|
|
attention_mask: (B, S) mask. |
|
|
past_key_values: cache from previous steps. |
|
|
cache_position: positions for cached tokens. |
|
|
labels: unsupported (will raise). |
|
|
|
|
|
Returns: |
|
|
BaseModelOutputWithPast with `last_hidden_state` and `past_key_values`. |
|
|
""" |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.model.get_input_embeddings()(input_ids) |
|
|
|
|
|
outputs = self.model.language_model( |
|
|
inputs_embeds=inputs_embeds, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state |
|
|
|
|
|
if labels is not None: |
|
|
raise NotImplementedError("Loss computation is not implemented in this version.") |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
past_key_values=outputs.past_key_values, |
|
|
last_hidden_state=hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
|
|
|
def forward_tts_lm( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
lm_last_hidden_state: Optional[torch.FloatTensor] = None, |
|
|
tts_text_masks: Optional[torch.BoolTensor] = None, |
|
|
**kwargs, |
|
|
) -> Union[Tuple, VibeVoiceCausalLMOutputWithPast]: |
|
|
""" |
|
|
Single pass of the TTS LM. |
|
|
|
|
|
- Overwrites tail embeddings with `lm_last_hidden_state`. |
|
|
- Adds type embedding via `tts_text_masks` (1=text, 0=speech). |
|
|
- Predicts EOS from last hidden state (binary classifier). |
|
|
- No loss / no full acoustic decoding here. |
|
|
|
|
|
Args: |
|
|
input_ids: (B, S) token ids. |
|
|
attention_mask: (B, S) mask. |
|
|
lm_last_hidden_state: (B, K, H) hidden states to splice into the tail. |
|
|
tts_text_masks: (B, 1) mask marking current position as text(1)/speech(0). |
|
|
past_key_values: cache from previous TTS steps. |
|
|
cache_position: positions for cached tokens. |
|
|
labels: unsupported (will raise). |
|
|
|
|
|
Returns: |
|
|
VibeVoiceCausalLMOutputWithPast with `logits` (EOS), `last_hidden_state`, `past_key_values`. |
|
|
""" |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
if inputs_embeds is None: |
|
|
|
|
|
inputs_embeds = self.model.get_input_embeddings()(input_ids) |
|
|
|
|
|
|
|
|
start_idx = inputs_embeds.shape[1] - lm_last_hidden_state.shape[1] |
|
|
inputs_embeds[:, start_idx:, :] = lm_last_hidden_state |
|
|
|
|
|
|
|
|
inputs_embeds = inputs_embeds + self.model.tts_input_types(tts_text_masks.long()) |
|
|
|
|
|
outputs = self.model.tts_language_model( |
|
|
inputs_embeds=inputs_embeds, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state |
|
|
logits = self.tts_eos_classifier(hidden_states[:, -1, :]) |
|
|
|
|
|
if labels is not None: |
|
|
raise NotImplementedError("Loss computation is not implemented in this version.") |
|
|
|
|
|
return VibeVoiceCausalLMOutputWithPast( |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
last_hidden_state=hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
def forward(self, *args, **kwargs): |
|
|
""" |
|
|
Unified forward is intentionally disabled. |
|
|
|
|
|
Reasons: |
|
|
1. The inference pipeline is staged: base text LM, then TTS LM, plus streaming & diffusion handled in `generate`. |
|
|
2. A monolithic call would hide required sequencing (prefill, window stepping, speech diffusion sampling). |
|
|
|
|
|
Use instead: |
|
|
- self.forward_lm(...) for a base text LM step (prefill or incremental). |
|
|
- self.forward_tts_lm(...) for a single TTS LM step (needs LM hidden states). |
|
|
- self.generate(...) for full streaming (text + speech + diffusion + audio assembly). |
|
|
|
|
|
Raises: |
|
|
RuntimeError: Always (by design). |
|
|
""" |
|
|
raise RuntimeError( |
|
|
"Unified forward is disabled. Use `forward_lm`, `forward_tts_lm`, or `generate` instead." |
|
|
) |
|
|
|
|
|
def _build_generate_config_model_kwargs(self, generation_config, inputs, tokenizer, return_processors=False, **kwargs): |
|
|
if generation_config is None: |
|
|
generation_config = GenerationConfig( |
|
|
bos_token_id=tokenizer.bos_token_id, |
|
|
eos_token_id=tokenizer.eos_token_id, |
|
|
pad_token_id = tokenizer.pad_token_id |
|
|
) |
|
|
else: |
|
|
generation_config = GenerationConfig( |
|
|
**generation_config, |
|
|
bos_token_id=tokenizer.bos_token_id, |
|
|
eos_token_id=tokenizer.eos_token_id, |
|
|
pad_token_id = tokenizer.pad_token_id |
|
|
) |
|
|
|
|
|
generation_config, model_kwargs = self._prepare_generation_config( |
|
|
generation_config, |
|
|
True, |
|
|
speech_start_id=tokenizer.speech_start_id, |
|
|
speech_end_id=tokenizer.speech_end_id, |
|
|
speech_diffusion_id=tokenizer.speech_diffusion_id, |
|
|
**kwargs |
|
|
) |
|
|
generation_config.speech_start_id = tokenizer.speech_start_id |
|
|
generation_config.speech_end_id = tokenizer.speech_end_id |
|
|
generation_config.speech_diffusion_id = tokenizer.speech_diffusion_id |
|
|
|
|
|
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(inputs, generation_config.bos_token_id, model_kwargs) |
|
|
batch_size = inputs_tensor.shape[0] |
|
|
device = self.device |
|
|
|
|
|
self._prepare_special_tokens(generation_config, True, device=device) |
|
|
generation_config.use_cache = True |
|
|
model_kwargs["use_cache"] = generation_config.use_cache |
|
|
input_ids = inputs_tensor.to(self.device) |
|
|
|
|
|
input_ids_length = input_ids.shape[1] |
|
|
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None |
|
|
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None |
|
|
generation_config = self._prepare_generated_length( |
|
|
generation_config=generation_config, |
|
|
has_default_max_length=has_default_max_length, |
|
|
has_default_min_length=has_default_min_length, |
|
|
model_input_name=model_input_name, |
|
|
inputs_tensor=inputs_tensor, |
|
|
input_ids_length=input_ids_length, |
|
|
) |
|
|
|
|
|
max_cache_length = generation_config.max_length - 1 |
|
|
self._prepare_cache_for_generation(generation_config, model_kwargs, None, batch_size, max_cache_length, device) |
|
|
model_kwargs['cache_position'] = torch.arange(input_ids_length, device=device, dtype=torch.long) |
|
|
for k, v in model_kwargs.items(): |
|
|
if isinstance(v, torch.Tensor): |
|
|
model_kwargs[k] = v.to(device=device) |
|
|
|
|
|
if return_processors: |
|
|
logits_processor = self._get_logits_processor( |
|
|
generation_config=generation_config, |
|
|
input_ids_seq_length=input_ids_length, |
|
|
encoder_input_ids=inputs_tensor, |
|
|
prefix_allowed_tokens_fn=None, |
|
|
logits_processor=LogitsProcessorList(), |
|
|
device=inputs_tensor.device, |
|
|
model_kwargs=model_kwargs, |
|
|
) |
|
|
|
|
|
stopping_criteria = self._get_stopping_criteria(generation_config=generation_config, stopping_criteria=StoppingCriteriaList()) |
|
|
|
|
|
return generation_config, model_kwargs, input_ids, logits_processor, stopping_criteria |
|
|
else: |
|
|
return generation_config, model_kwargs, input_ids |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate( |
|
|
self, |
|
|
inputs: Optional[torch.Tensor] = None, |
|
|
generation_config: Optional[GenerationConfig] = None, |
|
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None, |
|
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, |
|
|
synced_gpus: Optional[bool] = None, |
|
|
assistant_model: Optional["PreTrainedModel"] = None, |
|
|
audio_streamer: Optional[Union[AudioStreamer, AsyncAudioStreamer]] = None, |
|
|
negative_prompt_ids: Optional[torch.Tensor] = None, |
|
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None, |
|
|
speech_tensors: Optional[torch.FloatTensor] = None, |
|
|
speech_masks: Optional[torch.BoolTensor] = None, |
|
|
speech_input_mask: Optional[torch.BoolTensor] = None, |
|
|
tts_text_ids: Optional[torch.LongTensor] = None, |
|
|
return_speech: bool = True, |
|
|
cfg_scale: float = 1.0, |
|
|
stop_check_fn: Optional[Callable[[], bool]] = None, |
|
|
**kwargs, |
|
|
) -> Union[torch.LongTensor, VibeVoiceGenerationOutput]: |
|
|
""" |
|
|
Text is fed in small windows (dynamic slicing of `tts_text_ids`), which enables streaming text input: you don’t need the full text upfront. After each text window, a loop samples several speech latents (diffusion). The interleaved text encoding + speech generation enables streaming text input and realtime speech output. |
|
|
The function only supports batch size = 1 currently. |
|
|
|
|
|
- Windowed text prefill → incremental LM + TTS LM updates. |
|
|
- Interleave speech token diffusion sampling (`sample_speech_tokens`). |
|
|
- Stops on EOS (binary classifier) or max length / external `stop_check_fn`. |
|
|
- Returns final token `sequences` and (optionally) concatenated speech audio. |
|
|
|
|
|
Args (selected): |
|
|
tts_text_ids: Full text tokens to stream in windows. |
|
|
audio_streamer: If provided, emits audio chunks during generation. |
|
|
cfg_scale: Classifier-free guidance scale for speech diffusion. |
|
|
return_speech: If False, skips audio decode concatenation. |
|
|
stop_check_fn: External early-stop hook (returns True to halt). |
|
|
|
|
|
Returns: |
|
|
VibeVoiceGenerationOutput with: |
|
|
- sequences: final token ids |
|
|
- speech_outputs: list of concatenated audio tensors (or None) |
|
|
- reach_max_step_sample: flags for samples stopped by max length |
|
|
""" |
|
|
|
|
|
tokenizer = kwargs.pop("tokenizer", None) |
|
|
neg_text_input_id = tokenizer.convert_tokens_to_ids("<|image_pad|>") |
|
|
|
|
|
tts_lm_input_ids = kwargs.pop("tts_lm_input_ids", None) |
|
|
tts_lm_attention_mask = kwargs.pop("tts_lm_attention_mask", None) |
|
|
|
|
|
all_prefilled_outputs = kwargs.pop("all_prefilled_outputs", None) |
|
|
tts_text_ids = tts_text_ids.to(self.device) |
|
|
|
|
|
if kwargs.get('max_new_tokens', None) is None: |
|
|
kwargs['max_new_tokens'] = self.config.decoder_config.max_position_embeddings - tts_lm_input_ids.shape[-1] |
|
|
|
|
|
generation_config, model_kwargs, input_ids, logits_processor, stopping_criteria = self._build_generate_config_model_kwargs( |
|
|
generation_config, inputs, tokenizer, return_processors=True, **kwargs |
|
|
) |
|
|
|
|
|
negative_kwargs = { |
|
|
'input_ids': torch.full((kwargs['input_ids'].shape[0], 1), neg_text_input_id, dtype=torch.long, device=kwargs['input_ids'].device), |
|
|
'attention_mask': torch.ones((kwargs['input_ids'].shape[0], 1), dtype=torch.long, device=kwargs['input_ids'].device), |
|
|
'max_new_tokens': kwargs.get('max_new_tokens', 100) |
|
|
} |
|
|
negative_generation_config, negative_model_kwargs, negative_input_ids = self._build_generate_config_model_kwargs( |
|
|
None, None, tokenizer, return_processors=False, **negative_kwargs |
|
|
) |
|
|
|
|
|
tts_lm_kwargs = { |
|
|
'input_ids': tts_lm_input_ids, |
|
|
'attention_mask': tts_lm_attention_mask, |
|
|
'max_new_tokens': kwargs.get('max_new_tokens', 100) |
|
|
} |
|
|
tts_lm_generation_config, tts_lm_model_kwargs, tts_lm_input_ids = self._build_generate_config_model_kwargs( |
|
|
None, None, tokenizer, return_processors=False, **tts_lm_kwargs |
|
|
) |
|
|
|
|
|
tts_lm_negative_kwargs = { |
|
|
'input_ids': torch.full((kwargs['input_ids'].shape[0], 1), neg_text_input_id, dtype=torch.long, device=kwargs['input_ids'].device), |
|
|
'attention_mask': torch.ones((kwargs['input_ids'].shape[0], 1), dtype=torch.long, device=kwargs['input_ids'].device), |
|
|
'max_new_tokens': kwargs.get('max_new_tokens', 100) |
|
|
} |
|
|
tts_lm_negative_generation_config, tts_lm_negative_model_kwargs, tts_lm_negative_input_ids = self._build_generate_config_model_kwargs( |
|
|
None, None, tokenizer, return_processors=False, **tts_lm_negative_kwargs |
|
|
) |
|
|
|
|
|
acoustic_cache = VibeVoiceTokenizerStreamingCache() |
|
|
batch_size = input_ids.shape[0] |
|
|
assert batch_size == 1, "Currently only supports batch size == 1" |
|
|
device = input_ids.device |
|
|
finished_tags = torch.zeros(batch_size, dtype=torch.bool, device=device) |
|
|
verbose = kwargs.get("verbose", False) |
|
|
|
|
|
|
|
|
audio_chunks = [[] for _ in range(batch_size)] |
|
|
tts_text_window_index = 0 |
|
|
reach_max_step_sample = torch.zeros(batch_size, dtype=torch.bool, device=device) |
|
|
first_text_window_size = TTS_TEXT_WINDOW_SIZE if tts_text_ids.shape[1] >= TTS_TEXT_WINDOW_SIZE else tts_text_ids.shape[1] |
|
|
|
|
|
outputs = all_prefilled_outputs["lm"] |
|
|
tts_lm_outputs = all_prefilled_outputs["tts_lm"] |
|
|
negative_outputs = all_prefilled_outputs["neg_lm"] |
|
|
tts_lm_negative_outputs = all_prefilled_outputs["neg_tts_lm"] |
|
|
|
|
|
model_kwargs = _update_model_kwargs_for_generation( |
|
|
outputs, model_kwargs, num_new_tokens=first_text_window_size, |
|
|
) |
|
|
tts_lm_model_kwargs = _update_model_kwargs_for_generation( |
|
|
tts_lm_outputs, tts_lm_model_kwargs, num_new_tokens=first_text_window_size, |
|
|
) |
|
|
negative_model_kwargs = self._update_model_kwargs_for_generation( |
|
|
negative_outputs, negative_model_kwargs, is_encoder_decoder=False, |
|
|
) |
|
|
tts_lm_negative_model_kwargs = self._update_model_kwargs_for_generation( |
|
|
tts_lm_negative_outputs, tts_lm_negative_model_kwargs, is_encoder_decoder=False, |
|
|
) |
|
|
|
|
|
step = tts_lm_input_ids.shape[1] |
|
|
total_generated_speech_tokens = 0 |
|
|
total_prefilled_text_tokens = 0 |
|
|
if kwargs.get("show_progress_bar", True): |
|
|
progress_bar = tqdm( |
|
|
total=tts_lm_generation_config.max_length, |
|
|
desc=f"Prefilled {step} tokens, current step ({step} / {tts_lm_generation_config.max_length})", |
|
|
initial=step, |
|
|
leave=False |
|
|
) |
|
|
else: |
|
|
progress_bar = None |
|
|
|
|
|
while True: |
|
|
|
|
|
if stop_check_fn is not None and stop_check_fn(): |
|
|
if verbose: |
|
|
print(f"Generation stopped externally at step {step + 1}") |
|
|
|
|
|
if audio_streamer is not None: |
|
|
audio_streamer.end() |
|
|
break |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if finished_tags.all(): |
|
|
if hasattr(progress_bar, 'set_description'): |
|
|
progress_bar.set_description("Generation complete") |
|
|
break |
|
|
|
|
|
cur_input_tts_text_ids = tts_text_ids[:, tts_text_window_index*TTS_TEXT_WINDOW_SIZE:(tts_text_window_index+1)*TTS_TEXT_WINDOW_SIZE] |
|
|
next_text_window_size = tts_text_ids[:, (tts_text_window_index+1)*TTS_TEXT_WINDOW_SIZE:(tts_text_window_index+2)*TTS_TEXT_WINDOW_SIZE].shape[1] |
|
|
tts_text_window_index += 1 |
|
|
|
|
|
if cur_input_tts_text_ids.shape[1] > 0: |
|
|
input_ids = torch.cat([input_ids, cur_input_tts_text_ids], dim=-1) |
|
|
tts_lm_input_ids = torch.cat([tts_lm_input_ids, cur_input_tts_text_ids], dim=-1) |
|
|
|
|
|
if tts_lm_input_ids.shape[1] > tts_lm_generation_config.max_length: |
|
|
if verbose: |
|
|
print(f"Reached maximum generation length {generation_config.max_length}, stopped it.") |
|
|
reached_samples = torch.arange(batch_size, device=device)[~finished_tags] |
|
|
if reached_samples.numel() > 0: |
|
|
reach_max_step_sample[reached_samples] = True |
|
|
break |
|
|
|
|
|
step += cur_input_tts_text_ids.shape[1] |
|
|
total_prefilled_text_tokens += cur_input_tts_text_ids.shape[1] |
|
|
if progress_bar is not None: |
|
|
progress_bar.update(cur_input_tts_text_ids.shape[1]) |
|
|
progress_bar.set_description(f"Prefilled {total_prefilled_text_tokens} text tokens, generated {total_generated_speech_tokens} speech tokens, current step ({step} / {tts_lm_generation_config.max_length})") |
|
|
|
|
|
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) |
|
|
|
|
|
outputs = self.forward_lm( |
|
|
**model_inputs, return_dict=True, output_attentions=False, output_hidden_states=False, |
|
|
) |
|
|
model_kwargs = _update_model_kwargs_for_generation( |
|
|
outputs, model_kwargs, num_new_tokens=next_text_window_size, |
|
|
) |
|
|
|
|
|
tts_lm_model_inputs = self.prepare_inputs_for_generation(tts_lm_input_ids, **tts_lm_model_kwargs) |
|
|
tts_lm_additional_inputs = { |
|
|
"tts_text_masks": torch.ones_like(tts_lm_input_ids[:, -1:]), |
|
|
"lm_last_hidden_state": outputs.last_hidden_state, |
|
|
} |
|
|
|
|
|
tts_lm_outputs = self.forward_tts_lm( |
|
|
**tts_lm_model_inputs, **tts_lm_additional_inputs, return_dict=True, output_attentions=False, output_hidden_states=False, |
|
|
) |
|
|
tts_lm_model_kwargs = self._update_model_kwargs_for_generation( |
|
|
tts_lm_outputs, tts_lm_model_kwargs, is_encoder_decoder=False, |
|
|
) |
|
|
|
|
|
diffusion_indices = torch.LongTensor([0]) |
|
|
for cur_speech_index in range(TTS_SPEECH_WINDOW_SIZE): |
|
|
positive_condition = tts_lm_outputs.last_hidden_state[diffusion_indices, -1, :] |
|
|
negative_condition = tts_lm_negative_outputs.last_hidden_state[diffusion_indices, -1, :] |
|
|
|
|
|
speech_latent = self.sample_speech_tokens( |
|
|
positive_condition, |
|
|
negative_condition, |
|
|
cfg_scale=cfg_scale, |
|
|
).unsqueeze(1) |
|
|
|
|
|
|
|
|
scaled_latent = speech_latent / self.model.speech_scaling_factor.to(speech_latent.device) - self.model.speech_bias_factor.to(speech_latent.device) |
|
|
audio_chunk = self.model.acoustic_tokenizer.decode( |
|
|
scaled_latent.to(self.model.acoustic_tokenizer.device), |
|
|
cache=acoustic_cache, |
|
|
sample_indices=diffusion_indices.to(self.model.acoustic_tokenizer.device), |
|
|
use_cache=True, |
|
|
debug=False |
|
|
) |
|
|
|
|
|
|
|
|
for i, sample_idx in enumerate(diffusion_indices): |
|
|
idx = sample_idx.item() |
|
|
|
|
|
if not finished_tags[idx]: |
|
|
audio_chunks[idx].append(audio_chunk[i]) |
|
|
|
|
|
|
|
|
if audio_streamer is not None: |
|
|
|
|
|
audio_streamer.put(audio_chunk, diffusion_indices) |
|
|
|
|
|
acoustic_embed = self.model.acoustic_connector(speech_latent) |
|
|
tts_lm_input_ids = torch.cat([tts_lm_input_ids, torch.ones_like(tts_lm_input_ids[:, -1:])], dim=-1) |
|
|
|
|
|
if tts_lm_input_ids.shape[1] > tts_lm_generation_config.max_length: |
|
|
break |
|
|
|
|
|
step += 1 |
|
|
total_generated_speech_tokens += 1 |
|
|
if progress_bar is not None: |
|
|
progress_bar.update(1) |
|
|
progress_bar.set_description(f"Prefilled {total_prefilled_text_tokens} text tokens, generated {total_generated_speech_tokens} speech tokens, current step ({step} / {tts_lm_generation_config.max_length})") |
|
|
|
|
|
tts_lm_model_inputs = self.prepare_inputs_for_generation(tts_lm_input_ids, **tts_lm_model_kwargs) |
|
|
tts_lm_additional_inputs = { |
|
|
"tts_text_masks": torch.zeros_like(tts_lm_input_ids[:, -1:]), |
|
|
"lm_last_hidden_state": acoustic_embed, |
|
|
} |
|
|
|
|
|
tts_lm_outputs = self.forward_tts_lm( |
|
|
**tts_lm_model_inputs, **tts_lm_additional_inputs, return_dict=True, output_attentions=False, output_hidden_states=False, |
|
|
) |
|
|
if cur_speech_index == TTS_SPEECH_WINDOW_SIZE - 1 and next_text_window_size > 0: |
|
|
tts_lm_model_kwargs = _update_model_kwargs_for_generation( |
|
|
tts_lm_outputs, tts_lm_model_kwargs, num_new_tokens=next_text_window_size, |
|
|
) |
|
|
else: |
|
|
tts_lm_model_kwargs = self._update_model_kwargs_for_generation( |
|
|
tts_lm_outputs, tts_lm_model_kwargs, is_encoder_decoder=False, |
|
|
) |
|
|
|
|
|
tts_lm_negative_input_ids = torch.cat([tts_lm_negative_input_ids, torch.ones_like(tts_lm_input_ids[:, -1:])], dim=-1) |
|
|
tts_lm_negative_model_inputs = self.prepare_inputs_for_generation(tts_lm_negative_input_ids, **tts_lm_negative_model_kwargs) |
|
|
|
|
|
tts_lm_negative_additional_inputs = { |
|
|
"tts_text_masks": torch.zeros_like(tts_lm_negative_input_ids[:, -1:]), |
|
|
"lm_last_hidden_state": acoustic_embed, |
|
|
} |
|
|
tts_lm_negative_outputs = self.forward_tts_lm( |
|
|
**tts_lm_negative_model_inputs, **tts_lm_negative_additional_inputs, return_dict=True, output_attentions=False, output_hidden_states=False, |
|
|
) |
|
|
tts_lm_negative_model_kwargs = self._update_model_kwargs_for_generation( |
|
|
tts_lm_negative_outputs, tts_lm_negative_model_kwargs, is_encoder_decoder=False, |
|
|
) |
|
|
|
|
|
tts_eos_logits = torch.sigmoid(self.tts_eos_classifier(tts_lm_outputs.last_hidden_state[diffusion_indices, -1, :])) |
|
|
if tts_eos_logits[0].item() > 0.5: |
|
|
|
|
|
finished_tags[diffusion_indices] = True |
|
|
if audio_streamer is not None: |
|
|
audio_streamer.end(diffusion_indices) |
|
|
|
|
|
if tts_lm_input_ids.shape[1] > tts_lm_generation_config.max_length: |
|
|
if verbose: |
|
|
print(f"Reached maximum generation length {tts_lm_generation_config.max_length}, stopped it.") |
|
|
reached_samples = torch.arange(batch_size, device=device)[~finished_tags] |
|
|
if reached_samples.numel() > 0: |
|
|
reach_max_step_sample[reached_samples] = True |
|
|
break |
|
|
|
|
|
if audio_streamer is not None: |
|
|
audio_streamer.end() |
|
|
|
|
|
|
|
|
final_audio_outputs = [] |
|
|
for sample_chunks in audio_chunks: |
|
|
if sample_chunks: |
|
|
|
|
|
concatenated_audio = torch.cat(sample_chunks, dim=-1) |
|
|
final_audio_outputs.append(concatenated_audio) |
|
|
else: |
|
|
|
|
|
final_audio_outputs.append(None) |
|
|
|
|
|
if reach_max_step_sample is not None and reach_max_step_sample.any(): |
|
|
print(f"Reached maximum generation length {tts_lm_generation_config.max_length}, stopped it.") |
|
|
|
|
|
return VibeVoiceGenerationOutput( |
|
|
sequences=tts_lm_input_ids, |
|
|
speech_outputs=final_audio_outputs if return_speech else None, |
|
|
reach_max_step_sample=reach_max_step_sample, |
|
|
) |
|
|
|
|
|
@torch.no_grad() |
|
|
def sample_speech_tokens(self, condition, neg_condition, cfg_scale=3.0): |
|
|
self.model.noise_scheduler.set_timesteps(self.ddpm_inference_steps) |
|
|
condition = torch.cat([condition, neg_condition], dim=0).to(self.model.prediction_head.device) |
|
|
speech = torch.randn(condition.shape[0], self.config.acoustic_vae_dim).to(condition) |
|
|
for t in self.model.noise_scheduler.timesteps: |
|
|
half = speech[: len(speech) // 2] |
|
|
combined = torch.cat([half, half], dim=0) |
|
|
eps = self.model.prediction_head(combined, t.repeat(combined.shape[0]).to(combined), condition=condition) |
|
|
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) |
|
|
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) |
|
|
eps = torch.cat([half_eps, half_eps], dim=0) |
|
|
speech = self.model.noise_scheduler.step(eps, t, speech).prev_sample |
|
|
return speech[: len(speech) // 2] |
|
|
|
|
|
|
|
|
AutoModelForCausalLM.register(VibeVoiceStreamingConfig, VibeVoiceStreamingForConditionalGenerationInference) |
|
|
|
|
|
__all__ = [ |
|
|
"VibeVoiceStreamingForConditionalGenerationInference", |
|
|
] |
|
|
|