File size: 34,963 Bytes
26e0cd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 |
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union, Callable
from tqdm import tqdm
import torch
import torch.nn as nn
from transformers.models.auto import AutoModel, AutoModelForCausalLM
from transformers.generation import GenerationMixin, GenerationConfig, LogitsProcessor, LogitsProcessorList, StoppingCriteriaList
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
from transformers import modeling_utils
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.utils import logging
from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache
from .modular_vibevoice_diffusion_head import VibeVoiceDiffusionHead
from vibevoice.schedule.dpm_solver import DPMSolverMultistepScheduler
from .configuration_vibevoice_streaming import VibeVoiceStreamingConfig
from .modular_vibevoice_text_tokenizer import VibeVoiceTextTokenizer, VibeVoiceTextTokenizerFast
from .modeling_vibevoice_streaming import VibeVoiceStreamingPreTrainedModel, VibeVoiceStreamingModel, BinaryClassifier
from .streamer import AudioStreamer, AsyncAudioStreamer
logger = logging.get_logger(__name__)
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", "rowwise"]
TTS_TEXT_WINDOW_SIZE = 5
TTS_SPEECH_WINDOW_SIZE = 6
def _update_model_kwargs_for_generation(
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
num_new_tokens: int = 1,
) -> Dict[str, Any]:
"""
Update model_kwargs after adding new tokens.
Mainly for the case num_new_tokens > 1 (e.g. a whole text window):
- past_key_values: take from current outputs
- attention_mask: append num_new_tokens ones
- cache_position: advance by creating a range for all new positions
"""
# update past_key_values keeping its naming used in model code
model_kwargs["past_key_values"] = getattr(outputs, "past_key_values")
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], num_new_tokens))], dim=-1
)
model_kwargs["cache_position"] = torch.arange(model_kwargs["cache_position"][-1] + 1, model_kwargs["cache_position"][-1] + num_new_tokens + 1).to(model_kwargs["cache_position"].device)
return model_kwargs
@dataclass
class VibeVoiceCausalLMOutputWithPast(BaseModelOutputWithPast):
logits: Optional[torch.FloatTensor] = None
@dataclass
class VibeVoiceGenerationOutput(ModelOutput):
"""
Output type for VibeVoice generation.
Args:
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The generated sequences.
speech_outputs (`List[torch.FloatTensor]`, *optional*):
List of generated speech waveforms or latents for each speech segment.
"""
sequences: torch.LongTensor = None
speech_outputs: Optional[List[torch.FloatTensor]] = None
reach_max_step_sample: Optional[torch.BoolTensor] = None
class VibeVoiceStreamingForConditionalGenerationInference(VibeVoiceStreamingPreTrainedModel, GenerationMixin):
def __init__(self, config):
super().__init__(config)
# Initialize the base model
self.model = VibeVoiceStreamingModel(config)
# TTS generation EOS classifier
self.tts_eos_classifier = BinaryClassifier(config.decoder_config.hidden_size)
# inference configuration
self.ddpm_inference_steps = config.diffusion_head_config.ddpm_num_inference_steps
# Initialize weights and apply final processing
self.post_init()
@property
def noise_scheduler(self):
return self.model.noise_scheduler
@property
def prediction_head(self):
return self.model.prediction_head
@property
def speech_scaling_factor(self):
return self.model.speech_scaling_factor
@property
def speech_bias_factor(self):
return self.model.speech_bias_factor
@property
def acoustic_tokenizer(self):
return self.model.acoustic_tokenizer
@property
def acoustic_connector(self):
return self.model.acoustic_connector
def tie_weights(self):
"""
Tie the weights between the input embeddings and the output embeddings.
"""
# Tie lm_head.weight to language_model.embed_tokens.weight
if not getattr(self.config, 'tie_word_embeddings', False):
return
if hasattr(self, 'lm_head') and hasattr(self.model.language_model, 'embed_tokens'):
self.lm_head.weight = self.model.language_model.embed_tokens.weight
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
def get_output_embeddings(self):
"""
This model does not define an `lm_head` (vocabulary projection).
"""
return None
def set_output_embeddings(self, new_embeddings):
"""
No-op because there is no `lm_head`. Provided only to satisfy optional API calls.
To enable, first create `self.lm_head` then allow assignment.
"""
raise RuntimeError("Output embeddings (lm_head) are not defined for this model. "
"Create one before calling set_output_embeddings if needed.")
def set_speech_tokenizers(self, acoustic_tokenizer=None):
"""Set the speech tokenizers used for encoding and decoding speech."""
self.model.set_speech_tokenizers(acoustic_tokenizer)
def set_ddpm_inference_steps(self, num_steps=None):
self.ddpm_inference_steps = num_steps or self.config.diffusion_head_config.ddpm_num_inference_steps
# @can_return_tuple
def forward_lm(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[Tuple, BaseModelOutputWithPast]:
"""
Single pass of the base text LM.
- Builds embeddings if `inputs_embeds` not provided.
- Uses (and returns) `past_key_values` when `use_cache=True`.
- No loss / no lm_head / no speech logic.
Args:
input_ids: (B, S) token ids.
attention_mask: (B, S) mask.
past_key_values: cache from previous steps.
cache_position: positions for cached tokens.
labels: unsupported (will raise).
Returns:
BaseModelOutputWithPast with `last_hidden_state` and `past_key_values`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Get embeddings
if inputs_embeds is None:
inputs_embeds = self.model.get_input_embeddings()(input_ids)
outputs = self.model.language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state
if labels is not None:
raise NotImplementedError("Loss computation is not implemented in this version.")
return BaseModelOutputWithPast(
past_key_values=outputs.past_key_values,
last_hidden_state=hidden_states,
attentions=outputs.attentions,
)
# @can_return_tuple
def forward_tts_lm(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
lm_last_hidden_state: Optional[torch.FloatTensor] = None,
tts_text_masks: Optional[torch.BoolTensor] = None,
**kwargs,
) -> Union[Tuple, VibeVoiceCausalLMOutputWithPast]:
"""
Single pass of the TTS LM.
- Overwrites tail embeddings with `lm_last_hidden_state`.
- Adds type embedding via `tts_text_masks` (1=text, 0=speech).
- Predicts EOS from last hidden state (binary classifier).
- No loss / no full acoustic decoding here.
Args:
input_ids: (B, S) token ids.
attention_mask: (B, S) mask.
lm_last_hidden_state: (B, K, H) hidden states to splice into the tail.
tts_text_masks: (B, 1) mask marking current position as text(1)/speech(0).
past_key_values: cache from previous TTS steps.
cache_position: positions for cached tokens.
labels: unsupported (will raise).
Returns:
VibeVoiceCausalLMOutputWithPast with `logits` (EOS), `last_hidden_state`, `past_key_values`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Get embeddings
if inputs_embeds is None:
# Will be replaced with lm_last_hidden_state
inputs_embeds = self.model.get_input_embeddings()(input_ids)
# Replace the last part of inputs_embeds with lm_last_hidden_state
start_idx = inputs_embeds.shape[1] - lm_last_hidden_state.shape[1]
inputs_embeds[:, start_idx:, :] = lm_last_hidden_state
# Adds type embedding via `tts_text_masks`.
inputs_embeds = inputs_embeds + self.model.tts_input_types(tts_text_masks.long())
outputs = self.model.tts_language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state
logits = self.tts_eos_classifier(hidden_states[:, -1, :])
if labels is not None:
raise NotImplementedError("Loss computation is not implemented in this version.")
return VibeVoiceCausalLMOutputWithPast(
logits=logits,
past_key_values=outputs.past_key_values,
last_hidden_state=hidden_states,
attentions=outputs.attentions,
)
def forward(self, *args, **kwargs):
"""
Unified forward is intentionally disabled.
Reasons:
1. The inference pipeline is staged: base text LM, then TTS LM, plus streaming & diffusion handled in `generate`.
2. A monolithic call would hide required sequencing (prefill, window stepping, speech diffusion sampling).
Use instead:
- self.forward_lm(...) for a base text LM step (prefill or incremental).
- self.forward_tts_lm(...) for a single TTS LM step (needs LM hidden states).
- self.generate(...) for full streaming (text + speech + diffusion + audio assembly).
Raises:
RuntimeError: Always (by design).
"""
raise RuntimeError(
"Unified forward is disabled. Use `forward_lm`, `forward_tts_lm`, or `generate` instead."
)
def _build_generate_config_model_kwargs(self, generation_config, inputs, tokenizer, return_processors=False, **kwargs):
if generation_config is None:
generation_config = GenerationConfig(
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id = tokenizer.pad_token_id
)
else:
generation_config = GenerationConfig(
**generation_config,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id = tokenizer.pad_token_id
)
generation_config, model_kwargs = self._prepare_generation_config(
generation_config,
True,
speech_start_id=tokenizer.speech_start_id,
speech_end_id=tokenizer.speech_end_id,
speech_diffusion_id=tokenizer.speech_diffusion_id,
**kwargs
)
generation_config.speech_start_id = tokenizer.speech_start_id
generation_config.speech_end_id = tokenizer.speech_end_id
generation_config.speech_diffusion_id = tokenizer.speech_diffusion_id
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(inputs, generation_config.bos_token_id, model_kwargs)
batch_size = inputs_tensor.shape[0]
device = self.device
self._prepare_special_tokens(generation_config, True, device=device)
generation_config.use_cache = True
model_kwargs["use_cache"] = generation_config.use_cache
input_ids = inputs_tensor.to(self.device)
input_ids_length = input_ids.shape[1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
generation_config = self._prepare_generated_length(
generation_config=generation_config,
has_default_max_length=has_default_max_length,
has_default_min_length=has_default_min_length,
model_input_name=model_input_name,
inputs_tensor=inputs_tensor,
input_ids_length=input_ids_length,
)
max_cache_length = generation_config.max_length - 1
self._prepare_cache_for_generation(generation_config, model_kwargs, None, batch_size, max_cache_length, device)
model_kwargs['cache_position'] = torch.arange(input_ids_length, device=device, dtype=torch.long)
for k, v in model_kwargs.items():
if isinstance(v, torch.Tensor):
model_kwargs[k] = v.to(device=device)
if return_processors:
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_length,
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=None,
logits_processor=LogitsProcessorList(),
device=inputs_tensor.device,
model_kwargs=model_kwargs,
)
stopping_criteria = self._get_stopping_criteria(generation_config=generation_config, stopping_criteria=StoppingCriteriaList())
return generation_config, model_kwargs, input_ids, logits_processor, stopping_criteria
else:
return generation_config, model_kwargs, input_ids
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
synced_gpus: Optional[bool] = None,
assistant_model: Optional["PreTrainedModel"] = None,
audio_streamer: Optional[Union[AudioStreamer, AsyncAudioStreamer]] = None,
negative_prompt_ids: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
speech_tensors: Optional[torch.FloatTensor] = None,
speech_masks: Optional[torch.BoolTensor] = None,
speech_input_mask: Optional[torch.BoolTensor] = None,
tts_text_ids: Optional[torch.LongTensor] = None,
return_speech: bool = True,
cfg_scale: float = 1.0,
stop_check_fn: Optional[Callable[[], bool]] = None,
**kwargs,
) -> Union[torch.LongTensor, VibeVoiceGenerationOutput]:
"""
Text is fed in small windows (dynamic slicing of `tts_text_ids`), which enables streaming text input: you don’t need the full text upfront. After each text window, a loop samples several speech latents (diffusion). The interleaved text encoding + speech generation enables streaming text input and realtime speech output.
The function only supports batch size = 1 currently.
- Windowed text prefill → incremental LM + TTS LM updates.
- Interleave speech token diffusion sampling (`sample_speech_tokens`).
- Stops on EOS (binary classifier) or max length / external `stop_check_fn`.
- Returns final token `sequences` and (optionally) concatenated speech audio.
Args (selected):
tts_text_ids: Full text tokens to stream in windows.
audio_streamer: If provided, emits audio chunks during generation.
cfg_scale: Classifier-free guidance scale for speech diffusion.
return_speech: If False, skips audio decode concatenation.
stop_check_fn: External early-stop hook (returns True to halt).
Returns:
VibeVoiceGenerationOutput with:
- sequences: final token ids
- speech_outputs: list of concatenated audio tensors (or None)
- reach_max_step_sample: flags for samples stopped by max length
"""
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
tokenizer = kwargs.pop("tokenizer", None)
neg_text_input_id = tokenizer.convert_tokens_to_ids("<|image_pad|>")
tts_lm_input_ids = kwargs.pop("tts_lm_input_ids", None)
tts_lm_attention_mask = kwargs.pop("tts_lm_attention_mask", None)
# all_prefilled_outputs: cached prefilled prompt outputs for lm, tts_lm, neg_lm, neg_tts_lm
all_prefilled_outputs = kwargs.pop("all_prefilled_outputs", None)
tts_text_ids = tts_text_ids.to(self.device)
if kwargs.get('max_new_tokens', None) is None:
kwargs['max_new_tokens'] = self.config.decoder_config.max_position_embeddings - tts_lm_input_ids.shape[-1]
generation_config, model_kwargs, input_ids, logits_processor, stopping_criteria = self._build_generate_config_model_kwargs(
generation_config, inputs, tokenizer, return_processors=True, **kwargs
)
negative_kwargs = {
'input_ids': torch.full((kwargs['input_ids'].shape[0], 1), neg_text_input_id, dtype=torch.long, device=kwargs['input_ids'].device),
'attention_mask': torch.ones((kwargs['input_ids'].shape[0], 1), dtype=torch.long, device=kwargs['input_ids'].device),
'max_new_tokens': kwargs.get('max_new_tokens', 100)
}
negative_generation_config, negative_model_kwargs, negative_input_ids = self._build_generate_config_model_kwargs(
None, None, tokenizer, return_processors=False, **negative_kwargs
)
tts_lm_kwargs = {
'input_ids': tts_lm_input_ids,
'attention_mask': tts_lm_attention_mask,
'max_new_tokens': kwargs.get('max_new_tokens', 100)
}
tts_lm_generation_config, tts_lm_model_kwargs, tts_lm_input_ids = self._build_generate_config_model_kwargs(
None, None, tokenizer, return_processors=False, **tts_lm_kwargs
)
tts_lm_negative_kwargs = {
'input_ids': torch.full((kwargs['input_ids'].shape[0], 1), neg_text_input_id, dtype=torch.long, device=kwargs['input_ids'].device),
'attention_mask': torch.ones((kwargs['input_ids'].shape[0], 1), dtype=torch.long, device=kwargs['input_ids'].device),
'max_new_tokens': kwargs.get('max_new_tokens', 100)
}
tts_lm_negative_generation_config, tts_lm_negative_model_kwargs, tts_lm_negative_input_ids = self._build_generate_config_model_kwargs(
None, None, tokenizer, return_processors=False, **tts_lm_negative_kwargs
)
acoustic_cache = VibeVoiceTokenizerStreamingCache()
batch_size = input_ids.shape[0]
assert batch_size == 1, "Currently only supports batch size == 1"
device = input_ids.device
finished_tags = torch.zeros(batch_size, dtype=torch.bool, device=device)
verbose = kwargs.get("verbose", False)
# Initialize audio chunks storage for each sample
audio_chunks = [[] for _ in range(batch_size)]
tts_text_window_index = 0
reach_max_step_sample = torch.zeros(batch_size, dtype=torch.bool, device=device)
first_text_window_size = TTS_TEXT_WINDOW_SIZE if tts_text_ids.shape[1] >= TTS_TEXT_WINDOW_SIZE else tts_text_ids.shape[1]
outputs = all_prefilled_outputs["lm"]
tts_lm_outputs = all_prefilled_outputs["tts_lm"]
negative_outputs = all_prefilled_outputs["neg_lm"]
tts_lm_negative_outputs = all_prefilled_outputs["neg_tts_lm"]
model_kwargs = _update_model_kwargs_for_generation(
outputs, model_kwargs, num_new_tokens=first_text_window_size,
)
tts_lm_model_kwargs = _update_model_kwargs_for_generation(
tts_lm_outputs, tts_lm_model_kwargs, num_new_tokens=first_text_window_size,
)
negative_model_kwargs = self._update_model_kwargs_for_generation(
negative_outputs, negative_model_kwargs, is_encoder_decoder=False,
)
tts_lm_negative_model_kwargs = self._update_model_kwargs_for_generation(
tts_lm_negative_outputs, tts_lm_negative_model_kwargs, is_encoder_decoder=False,
)
step = tts_lm_input_ids.shape[1]
total_generated_speech_tokens = 0
total_prefilled_text_tokens = 0
if kwargs.get("show_progress_bar", True):
progress_bar = tqdm(
total=tts_lm_generation_config.max_length,
desc=f"Prefilled {step} tokens, current step ({step} / {tts_lm_generation_config.max_length})",
initial=step,
leave=False
)
else:
progress_bar = None
while True:
# Check for external stop signal
if stop_check_fn is not None and stop_check_fn():
if verbose:
print(f"Generation stopped externally at step {step + 1}")
# End the audio streamer if it exists
if audio_streamer is not None:
audio_streamer.end()
break
# # Check if audio_streamer has been ended (stopped externally)
# if audio_streamer is not None and hasattr(audio_streamer, 'finished_flags'):
# if any(audio_streamer.finished_flags):
# if verbose:
# print(f"Audio generation stopped externally at step {step + 1}")
# break
if finished_tags.all():
if hasattr(progress_bar, 'set_description'):
progress_bar.set_description("Generation complete")
break
cur_input_tts_text_ids = tts_text_ids[:, tts_text_window_index*TTS_TEXT_WINDOW_SIZE:(tts_text_window_index+1)*TTS_TEXT_WINDOW_SIZE]
next_text_window_size = tts_text_ids[:, (tts_text_window_index+1)*TTS_TEXT_WINDOW_SIZE:(tts_text_window_index+2)*TTS_TEXT_WINDOW_SIZE].shape[1]
tts_text_window_index += 1
if cur_input_tts_text_ids.shape[1] > 0:
input_ids = torch.cat([input_ids, cur_input_tts_text_ids], dim=-1)
tts_lm_input_ids = torch.cat([tts_lm_input_ids, cur_input_tts_text_ids], dim=-1)
if tts_lm_input_ids.shape[1] > tts_lm_generation_config.max_length:
if verbose:
print(f"Reached maximum generation length {generation_config.max_length}, stopped it.")
reached_samples = torch.arange(batch_size, device=device)[~finished_tags]
if reached_samples.numel() > 0:
reach_max_step_sample[reached_samples] = True
break
step += cur_input_tts_text_ids.shape[1]
total_prefilled_text_tokens += cur_input_tts_text_ids.shape[1]
if progress_bar is not None:
progress_bar.update(cur_input_tts_text_ids.shape[1])
progress_bar.set_description(f"Prefilled {total_prefilled_text_tokens} text tokens, generated {total_generated_speech_tokens} speech tokens, current step ({step} / {tts_lm_generation_config.max_length})")
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# Forward pass through the model
outputs = self.forward_lm(
**model_inputs, return_dict=True, output_attentions=False, output_hidden_states=False,
)
model_kwargs = _update_model_kwargs_for_generation(
outputs, model_kwargs, num_new_tokens=next_text_window_size,
)
tts_lm_model_inputs = self.prepare_inputs_for_generation(tts_lm_input_ids, **tts_lm_model_kwargs)
tts_lm_additional_inputs = {
"tts_text_masks": torch.ones_like(tts_lm_input_ids[:, -1:]),
"lm_last_hidden_state": outputs.last_hidden_state,
}
# Forward pass through the model
tts_lm_outputs = self.forward_tts_lm(
**tts_lm_model_inputs, **tts_lm_additional_inputs, return_dict=True, output_attentions=False, output_hidden_states=False,
)
tts_lm_model_kwargs = self._update_model_kwargs_for_generation(
tts_lm_outputs, tts_lm_model_kwargs, is_encoder_decoder=False,
)
diffusion_indices = torch.LongTensor([0])
for cur_speech_index in range(TTS_SPEECH_WINDOW_SIZE):
positive_condition = tts_lm_outputs.last_hidden_state[diffusion_indices, -1, :]
negative_condition = tts_lm_negative_outputs.last_hidden_state[diffusion_indices, -1, :]
speech_latent = self.sample_speech_tokens(
positive_condition,
negative_condition,
cfg_scale=cfg_scale,
).unsqueeze(1)
# Decode acoustic latent to audio using acoustic streaming cache
scaled_latent = speech_latent / self.model.speech_scaling_factor.to(speech_latent.device) - self.model.speech_bias_factor.to(speech_latent.device)
audio_chunk = self.model.acoustic_tokenizer.decode(
scaled_latent.to(self.model.acoustic_tokenizer.device),
cache=acoustic_cache, # Use acoustic-specific cache
sample_indices=diffusion_indices.to(self.model.acoustic_tokenizer.device),
use_cache=True,
debug=False
)
# Store audio chunks for each sample
for i, sample_idx in enumerate(diffusion_indices):
idx = sample_idx.item()
# Only append audio chunk if the sample is not finished
if not finished_tags[idx]:
audio_chunks[idx].append(audio_chunk[i])
# Add streaming support here
if audio_streamer is not None:
# Stream the audio chunks immediately
audio_streamer.put(audio_chunk, diffusion_indices)
acoustic_embed = self.model.acoustic_connector(speech_latent)
tts_lm_input_ids = torch.cat([tts_lm_input_ids, torch.ones_like(tts_lm_input_ids[:, -1:])], dim=-1)
if tts_lm_input_ids.shape[1] > tts_lm_generation_config.max_length:
break
step += 1
total_generated_speech_tokens += 1
if progress_bar is not None:
progress_bar.update(1)
progress_bar.set_description(f"Prefilled {total_prefilled_text_tokens} text tokens, generated {total_generated_speech_tokens} speech tokens, current step ({step} / {tts_lm_generation_config.max_length})")
tts_lm_model_inputs = self.prepare_inputs_for_generation(tts_lm_input_ids, **tts_lm_model_kwargs)
tts_lm_additional_inputs = {
"tts_text_masks": torch.zeros_like(tts_lm_input_ids[:, -1:]),
"lm_last_hidden_state": acoustic_embed,
}
# Forward pass through the model
tts_lm_outputs = self.forward_tts_lm(
**tts_lm_model_inputs, **tts_lm_additional_inputs, return_dict=True, output_attentions=False, output_hidden_states=False,
)
if cur_speech_index == TTS_SPEECH_WINDOW_SIZE - 1 and next_text_window_size > 0:
tts_lm_model_kwargs = _update_model_kwargs_for_generation(
tts_lm_outputs, tts_lm_model_kwargs, num_new_tokens=next_text_window_size,
)
else:
tts_lm_model_kwargs = self._update_model_kwargs_for_generation(
tts_lm_outputs, tts_lm_model_kwargs, is_encoder_decoder=False,
)
tts_lm_negative_input_ids = torch.cat([tts_lm_negative_input_ids, torch.ones_like(tts_lm_input_ids[:, -1:])], dim=-1)
tts_lm_negative_model_inputs = self.prepare_inputs_for_generation(tts_lm_negative_input_ids, **tts_lm_negative_model_kwargs)
# Forward negative pass through the model
tts_lm_negative_additional_inputs = {
"tts_text_masks": torch.zeros_like(tts_lm_negative_input_ids[:, -1:]),
"lm_last_hidden_state": acoustic_embed,
}
tts_lm_negative_outputs = self.forward_tts_lm(
**tts_lm_negative_model_inputs, **tts_lm_negative_additional_inputs, return_dict=True, output_attentions=False, output_hidden_states=False,
)
tts_lm_negative_model_kwargs = self._update_model_kwargs_for_generation(
tts_lm_negative_outputs, tts_lm_negative_model_kwargs, is_encoder_decoder=False,
)
tts_eos_logits = torch.sigmoid(self.tts_eos_classifier(tts_lm_outputs.last_hidden_state[diffusion_indices, -1, :]))
if tts_eos_logits[0].item() > 0.5:
# If EOS token is predicted, we can stop generation for this sample
finished_tags[diffusion_indices] = True
if audio_streamer is not None:
audio_streamer.end(diffusion_indices)
if tts_lm_input_ids.shape[1] > tts_lm_generation_config.max_length:
if verbose:
print(f"Reached maximum generation length {tts_lm_generation_config.max_length}, stopped it.")
reached_samples = torch.arange(batch_size, device=device)[~finished_tags]
if reached_samples.numel() > 0:
reach_max_step_sample[reached_samples] = True
break
if audio_streamer is not None:
audio_streamer.end()
# Concatenate audio chunks for each sample
final_audio_outputs = []
for sample_chunks in audio_chunks:
if sample_chunks:
# Concatenate all chunks along the time dimension (assumed to be the last dimension)
concatenated_audio = torch.cat(sample_chunks, dim=-1)
final_audio_outputs.append(concatenated_audio)
else:
# If no audio was generated for this sample, append None
final_audio_outputs.append(None)
if reach_max_step_sample is not None and reach_max_step_sample.any():
print(f"Reached maximum generation length {tts_lm_generation_config.max_length}, stopped it.")
return VibeVoiceGenerationOutput(
sequences=tts_lm_input_ids,
speech_outputs=final_audio_outputs if return_speech else None,
reach_max_step_sample=reach_max_step_sample,
)
@torch.no_grad()
def sample_speech_tokens(self, condition, neg_condition, cfg_scale=3.0):
self.model.noise_scheduler.set_timesteps(self.ddpm_inference_steps)
condition = torch.cat([condition, neg_condition], dim=0).to(self.model.prediction_head.device)
speech = torch.randn(condition.shape[0], self.config.acoustic_vae_dim).to(condition)
for t in self.model.noise_scheduler.timesteps:
half = speech[: len(speech) // 2]
combined = torch.cat([half, half], dim=0)
eps = self.model.prediction_head(combined, t.repeat(combined.shape[0]).to(combined), condition=condition)
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
speech = self.model.noise_scheduler.step(eps, t, speech).prev_sample
return speech[: len(speech) // 2]
AutoModelForCausalLM.register(VibeVoiceStreamingConfig, VibeVoiceStreamingForConditionalGenerationInference)
__all__ = [
"VibeVoiceStreamingForConditionalGenerationInference",
]
|