Gemini899's picture
Update app.py
a9d7ed4 verified
import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
# Set precision for better performance
torch.set_float32_matmul_precision("high")
# Define image transformation pipeline
transform_image = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# Main function to handle image processing
def fn(image):
im = load_img(image, output_type="pil")
im = im.convert("RGB")
origin = im.copy()
processed_image = process(im)
return (processed_image, origin)
# Process function that runs on GPU
@spaces.GPU(duration=30)
def process(image):
# CRITICAL: Load model INSIDE the @spaces.GPU decorated function
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
birefnet.eval()
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
torch.cuda.empty_cache()
return image
# Process function for file output
def process_file(f):
name_path = f.rsplit(".", 1)[0] + ".png"
im = load_img(f, output_type="pil")
im = im.convert("RGB")
transparent = process(im)
transparent.save(name_path)
return name_path
# Define UI components
slider1 = ImageSlider(label="Processed Image", type="pil")
slider2 = ImageSlider(label="Processed Image from URL", type="pil")
image_upload = gr.Image(label="Upload an image")
image_file_upload = gr.Image(label="Upload an image", type="filepath")
url_input = gr.Textbox(label="Paste an image URL")
output_file = gr.File(label="Output PNG File")
# Example images
chameleon = load_img("butterfly.jpg", output_type="pil")
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
# Create interfaces for each tab
tab1 = gr.Interface(
fn, inputs=image_upload, outputs=slider1, examples=[chameleon], api_name="image"
)
tab2 = gr.Interface(
fn, inputs=url_input, outputs=slider2, examples=[url_example], api_name="text"
)
tab3 = gr.Interface(
process_file,
inputs=image_file_upload,
outputs=output_file,
examples=["butterfly.jpg"],
api_name="png",
)
# Create tabbed interface
demo = gr.TabbedInterface(
[tab1, tab2, tab3],
["Image Upload", "URL Input", "File Output"],
title="Background Removal Tool",
)
# Launch the app
if __name__ == "__main__":
demo.launch(show_error=True)