import gradio as gr from gradio_imageslider import ImageSlider from loadimg import load_img import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms # Set precision for better performance torch.set_float32_matmul_precision("high") # Define image transformation pipeline transform_image = transforms.Compose([ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) # Main function to handle image processing def fn(image): im = load_img(image, output_type="pil") im = im.convert("RGB") origin = im.copy() processed_image = process(im) return (processed_image, origin) # Process function that runs on GPU @spaces.GPU(duration=30) def process(image): # CRITICAL: Load model INSIDE the @spaces.GPU decorated function birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to("cuda") birefnet.eval() image_size = image.size input_images = transform_image(image).unsqueeze(0).to("cuda") # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) image.putalpha(mask) torch.cuda.empty_cache() return image # Process function for file output def process_file(f): name_path = f.rsplit(".", 1)[0] + ".png" im = load_img(f, output_type="pil") im = im.convert("RGB") transparent = process(im) transparent.save(name_path) return name_path # Define UI components slider1 = ImageSlider(label="Processed Image", type="pil") slider2 = ImageSlider(label="Processed Image from URL", type="pil") image_upload = gr.Image(label="Upload an image") image_file_upload = gr.Image(label="Upload an image", type="filepath") url_input = gr.Textbox(label="Paste an image URL") output_file = gr.File(label="Output PNG File") # Example images chameleon = load_img("butterfly.jpg", output_type="pil") url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg" # Create interfaces for each tab tab1 = gr.Interface( fn, inputs=image_upload, outputs=slider1, examples=[chameleon], api_name="image" ) tab2 = gr.Interface( fn, inputs=url_input, outputs=slider2, examples=[url_example], api_name="text" ) tab3 = gr.Interface( process_file, inputs=image_file_upload, outputs=output_file, examples=["butterfly.jpg"], api_name="png", ) # Create tabbed interface demo = gr.TabbedInterface( [tab1, tab2, tab3], ["Image Upload", "URL Input", "File Output"], title="Background Removal Tool", ) # Launch the app if __name__ == "__main__": demo.launch(show_error=True)