TWON-Agents
Collection
4 items
•
Updated
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the generator dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 2.3503 | 0.0497 | 200 | 2.1682 |
| 2.1036 | 0.0994 | 400 | 2.1058 |
| 1.9649 | 0.1491 | 600 | 2.0560 |
| 1.8396 | 0.1988 | 800 | 2.0452 |
| 1.7276 | 0.2484 | 1000 | 2.0329 |
| 1.6524 | 0.2981 | 1200 | 2.0138 |
| 1.5645 | 0.3478 | 1400 | 2.0187 |
| 1.4801 | 0.3975 | 1600 | 1.9912 |
| 1.4005 | 0.4472 | 1800 | 1.9669 |
| 1.3587 | 0.4969 | 2000 | 1.9804 |
| 1.2921 | 0.5466 | 2200 | 1.9398 |
| 1.2397 | 0.5963 | 2400 | 1.9562 |
| 1.1929 | 0.6460 | 2600 | 1.9550 |
| 1.1304 | 0.6957 | 2800 | 1.9113 |
| 1.0899 | 0.7453 | 3000 | 1.9063 |
| 1.0553 | 0.7950 | 3200 | 1.9009 |
| 1.0314 | 0.8447 | 3400 | 1.8910 |
| 0.9999 | 0.8944 | 3600 | 1.9052 |
| 0.9609 | 0.9441 | 3800 | 1.8723 |
| 0.9628 | 0.9938 | 4000 | 1.9101 |
| 0.9334 | 1.0435 | 4200 | 1.9030 |
| 0.9248 | 1.0932 | 4400 | 1.9266 |
| 0.8926 | 1.1429 | 4600 | 1.8806 |
| 0.8571 | 1.1925 | 4800 | 1.8865 |
| 0.8307 | 1.2422 | 5000 | 1.9113 |
| 0.7843 | 1.2919 | 5200 | 1.9155 |
| 0.7805 | 1.3416 | 5400 | 1.8569 |
| 0.812 | 1.3913 | 5600 | 1.8873 |
| 0.7783 | 1.4410 | 5800 | 1.8931 |
| 0.7489 | 1.4907 | 6000 | 1.8741 |
| 0.7386 | 1.5404 | 6200 | 1.8477 |
| 0.7217 | 1.5901 | 6400 | 1.8675 |
| 0.7177 | 1.6398 | 6600 | 1.8315 |
| 0.7051 | 1.6894 | 6800 | 1.8340 |
| 0.6848 | 1.7391 | 7000 | 1.8802 |
| 0.6959 | 1.7888 | 7200 | 1.8618 |
| 0.6938 | 1.8385 | 7400 | 1.8422 |
| 0.6847 | 1.8882 | 7600 | 1.8499 |
| 0.6601 | 1.9379 | 7800 | 1.8307 |
| 0.6423 | 1.9876 | 8000 | 1.8136 |
| 0.6275 | 2.0373 | 8200 | 1.8181 |
| 0.6361 | 2.0870 | 8400 | 1.8578 |
| 0.6323 | 2.1366 | 8600 | 1.8541 |
| 0.6192 | 2.1863 | 8800 | 1.8347 |
| 0.6273 | 2.2360 | 9000 | 1.8254 |
| 0.5939 | 2.2857 | 9200 | 1.8243 |
| 0.5994 | 2.3354 | 9400 | 1.8133 |
| 0.591 | 2.3851 | 9600 | 1.8312 |
| 0.5619 | 2.4348 | 9800 | 1.8509 |
| 0.6013 | 2.4845 | 10000 | 1.8538 |
| 0.5538 | 2.5342 | 10200 | 1.8633 |
| 0.5623 | 2.5839 | 10400 | 1.7793 |
| 0.5824 | 2.6335 | 10600 | 1.8132 |
| 0.5611 | 2.6832 | 10800 | 1.8083 |
| 0.5493 | 2.7329 | 11000 | 1.8147 |
| 0.5329 | 2.7826 | 11200 | 1.7890 |
| 0.5374 | 2.8323 | 11400 | 1.7984 |
| 0.5389 | 2.8820 | 11600 | 1.8228 |
| 0.5193 | 2.9317 | 11800 | 1.7950 |
| 0.5222 | 2.9814 | 12000 | 1.8798 |
| 0.523 | 3.0311 | 12200 | 1.8300 |
| 0.4889 | 3.0807 | 12400 | 1.8481 |
| 0.5143 | 3.1304 | 12600 | 1.8807 |
| 0.4961 | 3.1801 | 12800 | 1.7871 |
| 0.4961 | 3.2298 | 13000 | 1.8220 |
| 0.503 | 3.2795 | 13200 | 1.8354 |
| 0.4936 | 3.3292 | 13400 | 1.8162 |
| 0.4753 | 3.3789 | 13600 | 1.8069 |
| 0.4971 | 3.4286 | 13800 | 1.8034 |
| 0.4901 | 3.4783 | 14000 | 1.8229 |
| 0.4921 | 3.5280 | 14200 | 1.8046 |
| 0.4873 | 3.5776 | 14400 | 1.8074 |
| 0.4697 | 3.6273 | 14600 | 1.7865 |
| 0.478 | 3.6770 | 14800 | 1.7935 |
| 0.4657 | 3.7267 | 15000 | 1.8454 |
| 0.4616 | 3.7764 | 15200 | 1.8294 |
| 0.4463 | 3.8261 | 15400 | 1.8229 |
| 0.4489 | 3.8758 | 15600 | 1.8061 |
| 0.4628 | 3.9255 | 15800 | 1.8125 |
| 0.424 | 3.9752 | 16000 | 1.7936 |
| 0.4536 | 4.0248 | 16200 | 1.8191 |
| 0.4347 | 4.0745 | 16400 | 1.8064 |
| 0.4333 | 4.1242 | 16600 | 1.8251 |
| 0.4611 | 4.1739 | 16800 | 1.8013 |
| 0.4381 | 4.2236 | 17000 | 1.8054 |
| 0.4491 | 4.2733 | 17200 | 1.8044 |
| 0.4262 | 4.3230 | 17400 | 1.8105 |
| 0.4356 | 4.3727 | 17600 | 1.8472 |
| 0.4315 | 4.4224 | 17800 | 1.8449 |
| 0.4364 | 4.4720 | 18000 | 1.7980 |
| 0.4134 | 4.5217 | 18200 | 1.8057 |
| 0.4417 | 4.5714 | 18400 | 1.8060 |
| 0.4082 | 4.6211 | 18600 | 1.8169 |
| 0.4155 | 4.6708 | 18800 | 1.7955 |
| 0.4146 | 4.7205 | 19000 | 1.7947 |
| 0.4011 | 4.7702 | 19200 | 1.7869 |
| 0.4107 | 4.8199 | 19400 | 1.8057 |
| 0.4099 | 4.8696 | 19600 | 1.8007 |
| 0.4186 | 4.9193 | 19800 | 1.7996 |
| 0.3943 | 4.9689 | 20000 | 1.8203 |
| 0.4066 | 5.0186 | 20200 | 1.8108 |
| 0.3899 | 5.0683 | 20400 | 1.8313 |
| 0.404 | 5.1180 | 20600 | 1.8058 |
| 0.3946 | 5.1677 | 20800 | 1.8053 |
| 0.4003 | 5.2174 | 21000 | 1.8303 |
| 0.3865 | 5.2671 | 21200 | 1.8430 |
| 0.3917 | 5.3168 | 21400 | 1.8160 |
| 0.3952 | 5.3665 | 21600 | 1.8379 |
| 0.3983 | 5.4161 | 21800 | 1.8183 |
| 0.3704 | 5.4658 | 22000 | 1.8574 |
| 0.3923 | 5.5155 | 22200 | 1.8571 |
| 0.404 | 5.5652 | 22400 | 1.8146 |
| 0.3892 | 5.6149 | 22600 | 1.8386 |
| 0.3923 | 5.6646 | 22800 | 1.8043 |
| 0.3879 | 5.7143 | 23000 | 1.8278 |
| 0.3768 | 5.7640 | 23200 | 1.8183 |
| 0.3817 | 5.8137 | 23400 | 1.8415 |
| 0.3817 | 5.8634 | 23600 | 1.8258 |
| 0.3901 | 5.9130 | 23800 | 1.8612 |
| 0.39 | 5.9627 | 24000 | 1.7939 |
| 0.3704 | 6.0124 | 24200 | 1.8254 |
| 0.3759 | 6.0621 | 24400 | 1.8531 |
| 0.3642 | 6.1118 | 24600 | 1.8282 |
| 0.3692 | 6.1615 | 24800 | 1.8415 |
| 0.3755 | 6.2112 | 25000 | 1.8282 |
| 0.3786 | 6.2609 | 25200 | 1.8480 |
| 0.3752 | 6.3106 | 25400 | 1.8108 |
| 0.3567 | 6.3602 | 25600 | 1.8374 |
| 0.3685 | 6.4099 | 25800 | 1.8302 |
| 0.3677 | 6.4596 | 26000 | 1.8064 |
| 0.3608 | 6.5093 | 26200 | 1.8223 |
| 0.3772 | 6.5590 | 26400 | 1.8755 |
| 0.3778 | 6.6087 | 26600 | 1.8252 |
| 0.3708 | 6.6584 | 26800 | 1.8462 |
| 0.3629 | 6.7081 | 27000 | 1.8216 |
| 0.3735 | 6.7578 | 27200 | 1.8410 |
| 0.3627 | 6.8075 | 27400 | 1.8334 |
| 0.353 | 6.8571 | 27600 | 1.8406 |
| 0.3711 | 6.9068 | 27800 | 1.8674 |
| 0.3543 | 6.9565 | 28000 | 1.8352 |
| 0.3709 | 7.0062 | 28200 | 1.8477 |
| 0.3565 | 7.0559 | 28400 | 1.8331 |
| 0.3549 | 7.1056 | 28600 | 1.8234 |
| 0.3629 | 7.1553 | 28800 | 1.8365 |
| 0.3541 | 7.2050 | 29000 | 1.8365 |
| 0.3468 | 7.2547 | 29200 | 1.8321 |
| 0.3527 | 7.3043 | 29400 | 1.8489 |
| 0.3608 | 7.3540 | 29600 | 1.8420 |
| 0.365 | 7.4037 | 29800 | 1.8372 |
| 0.3668 | 7.4534 | 30000 | 1.8356 |
| 0.3553 | 7.5031 | 30200 | 1.8418 |
| 0.3456 | 7.5528 | 30400 | 1.8356 |
| 0.3578 | 7.6025 | 30600 | 1.8243 |
| 0.353 | 7.6522 | 30800 | 1.8492 |
| 0.342 | 7.7019 | 31000 | 1.8441 |
| 0.3493 | 7.7516 | 31200 | 1.8292 |
| 0.3553 | 7.8012 | 31400 | 1.8441 |
| 0.3529 | 7.8509 | 31600 | 1.8383 |
| 0.3402 | 7.9006 | 31800 | 1.8447 |
| 0.3562 | 7.9503 | 32000 | 1.8356 |
| 0.3735 | 8.0 | 32200 | 1.8358 |
Base model
meta-llama/Llama-3.2-3B-Instruct