TWON-Agent-OSN-Replies-en

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8358

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss
2.3503 0.0497 200 2.1682
2.1036 0.0994 400 2.1058
1.9649 0.1491 600 2.0560
1.8396 0.1988 800 2.0452
1.7276 0.2484 1000 2.0329
1.6524 0.2981 1200 2.0138
1.5645 0.3478 1400 2.0187
1.4801 0.3975 1600 1.9912
1.4005 0.4472 1800 1.9669
1.3587 0.4969 2000 1.9804
1.2921 0.5466 2200 1.9398
1.2397 0.5963 2400 1.9562
1.1929 0.6460 2600 1.9550
1.1304 0.6957 2800 1.9113
1.0899 0.7453 3000 1.9063
1.0553 0.7950 3200 1.9009
1.0314 0.8447 3400 1.8910
0.9999 0.8944 3600 1.9052
0.9609 0.9441 3800 1.8723
0.9628 0.9938 4000 1.9101
0.9334 1.0435 4200 1.9030
0.9248 1.0932 4400 1.9266
0.8926 1.1429 4600 1.8806
0.8571 1.1925 4800 1.8865
0.8307 1.2422 5000 1.9113
0.7843 1.2919 5200 1.9155
0.7805 1.3416 5400 1.8569
0.812 1.3913 5600 1.8873
0.7783 1.4410 5800 1.8931
0.7489 1.4907 6000 1.8741
0.7386 1.5404 6200 1.8477
0.7217 1.5901 6400 1.8675
0.7177 1.6398 6600 1.8315
0.7051 1.6894 6800 1.8340
0.6848 1.7391 7000 1.8802
0.6959 1.7888 7200 1.8618
0.6938 1.8385 7400 1.8422
0.6847 1.8882 7600 1.8499
0.6601 1.9379 7800 1.8307
0.6423 1.9876 8000 1.8136
0.6275 2.0373 8200 1.8181
0.6361 2.0870 8400 1.8578
0.6323 2.1366 8600 1.8541
0.6192 2.1863 8800 1.8347
0.6273 2.2360 9000 1.8254
0.5939 2.2857 9200 1.8243
0.5994 2.3354 9400 1.8133
0.591 2.3851 9600 1.8312
0.5619 2.4348 9800 1.8509
0.6013 2.4845 10000 1.8538
0.5538 2.5342 10200 1.8633
0.5623 2.5839 10400 1.7793
0.5824 2.6335 10600 1.8132
0.5611 2.6832 10800 1.8083
0.5493 2.7329 11000 1.8147
0.5329 2.7826 11200 1.7890
0.5374 2.8323 11400 1.7984
0.5389 2.8820 11600 1.8228
0.5193 2.9317 11800 1.7950
0.5222 2.9814 12000 1.8798
0.523 3.0311 12200 1.8300
0.4889 3.0807 12400 1.8481
0.5143 3.1304 12600 1.8807
0.4961 3.1801 12800 1.7871
0.4961 3.2298 13000 1.8220
0.503 3.2795 13200 1.8354
0.4936 3.3292 13400 1.8162
0.4753 3.3789 13600 1.8069
0.4971 3.4286 13800 1.8034
0.4901 3.4783 14000 1.8229
0.4921 3.5280 14200 1.8046
0.4873 3.5776 14400 1.8074
0.4697 3.6273 14600 1.7865
0.478 3.6770 14800 1.7935
0.4657 3.7267 15000 1.8454
0.4616 3.7764 15200 1.8294
0.4463 3.8261 15400 1.8229
0.4489 3.8758 15600 1.8061
0.4628 3.9255 15800 1.8125
0.424 3.9752 16000 1.7936
0.4536 4.0248 16200 1.8191
0.4347 4.0745 16400 1.8064
0.4333 4.1242 16600 1.8251
0.4611 4.1739 16800 1.8013
0.4381 4.2236 17000 1.8054
0.4491 4.2733 17200 1.8044
0.4262 4.3230 17400 1.8105
0.4356 4.3727 17600 1.8472
0.4315 4.4224 17800 1.8449
0.4364 4.4720 18000 1.7980
0.4134 4.5217 18200 1.8057
0.4417 4.5714 18400 1.8060
0.4082 4.6211 18600 1.8169
0.4155 4.6708 18800 1.7955
0.4146 4.7205 19000 1.7947
0.4011 4.7702 19200 1.7869
0.4107 4.8199 19400 1.8057
0.4099 4.8696 19600 1.8007
0.4186 4.9193 19800 1.7996
0.3943 4.9689 20000 1.8203
0.4066 5.0186 20200 1.8108
0.3899 5.0683 20400 1.8313
0.404 5.1180 20600 1.8058
0.3946 5.1677 20800 1.8053
0.4003 5.2174 21000 1.8303
0.3865 5.2671 21200 1.8430
0.3917 5.3168 21400 1.8160
0.3952 5.3665 21600 1.8379
0.3983 5.4161 21800 1.8183
0.3704 5.4658 22000 1.8574
0.3923 5.5155 22200 1.8571
0.404 5.5652 22400 1.8146
0.3892 5.6149 22600 1.8386
0.3923 5.6646 22800 1.8043
0.3879 5.7143 23000 1.8278
0.3768 5.7640 23200 1.8183
0.3817 5.8137 23400 1.8415
0.3817 5.8634 23600 1.8258
0.3901 5.9130 23800 1.8612
0.39 5.9627 24000 1.7939
0.3704 6.0124 24200 1.8254
0.3759 6.0621 24400 1.8531
0.3642 6.1118 24600 1.8282
0.3692 6.1615 24800 1.8415
0.3755 6.2112 25000 1.8282
0.3786 6.2609 25200 1.8480
0.3752 6.3106 25400 1.8108
0.3567 6.3602 25600 1.8374
0.3685 6.4099 25800 1.8302
0.3677 6.4596 26000 1.8064
0.3608 6.5093 26200 1.8223
0.3772 6.5590 26400 1.8755
0.3778 6.6087 26600 1.8252
0.3708 6.6584 26800 1.8462
0.3629 6.7081 27000 1.8216
0.3735 6.7578 27200 1.8410
0.3627 6.8075 27400 1.8334
0.353 6.8571 27600 1.8406
0.3711 6.9068 27800 1.8674
0.3543 6.9565 28000 1.8352
0.3709 7.0062 28200 1.8477
0.3565 7.0559 28400 1.8331
0.3549 7.1056 28600 1.8234
0.3629 7.1553 28800 1.8365
0.3541 7.2050 29000 1.8365
0.3468 7.2547 29200 1.8321
0.3527 7.3043 29400 1.8489
0.3608 7.3540 29600 1.8420
0.365 7.4037 29800 1.8372
0.3668 7.4534 30000 1.8356
0.3553 7.5031 30200 1.8418
0.3456 7.5528 30400 1.8356
0.3578 7.6025 30600 1.8243
0.353 7.6522 30800 1.8492
0.342 7.7019 31000 1.8441
0.3493 7.7516 31200 1.8292
0.3553 7.8012 31400 1.8441
0.3529 7.8509 31600 1.8383
0.3402 7.9006 31800 1.8447
0.3562 7.9503 32000 1.8356
0.3735 8.0 32200 1.8358

Framework versions

  • PEFT 0.12.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for simon-muenker/TWON-Agent-OSN-Replies-en

Adapter
(584)
this model

Collection including simon-muenker/TWON-Agent-OSN-Replies-en

Evaluation results