Upload 2 files
Browse files- modeling_qwen2.py +87 -266
modeling_qwen2.py
CHANGED
|
@@ -40,8 +40,8 @@ from transformers.utils import (add_start_docstrings,
|
|
| 40 |
is_flash_attn_greater_or_equal_2_10, logging,
|
| 41 |
replace_return_docstrings)
|
| 42 |
|
|
|
|
| 43 |
from .configuration_qwen2 import QwenEnPRMConfig as Qwen2Config
|
| 44 |
-
from .nets import EnsembleModel
|
| 45 |
|
| 46 |
if is_flash_attn_2_available():
|
| 47 |
from transformers.modeling_flash_attention_utils import \
|
|
@@ -92,30 +92,19 @@ def _prepare_4d_causal_attention_mask_with_cache_position(
|
|
| 92 |
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 93 |
causal_mask = attention_mask
|
| 94 |
else:
|
| 95 |
-
causal_mask = torch.full(
|
| 96 |
-
(sequence_length, target_length),
|
| 97 |
-
fill_value=min_dtype,
|
| 98 |
-
dtype=dtype,
|
| 99 |
-
device=device,
|
| 100 |
-
)
|
| 101 |
if sequence_length != 1:
|
| 102 |
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 103 |
-
causal_mask *= torch.arange(
|
| 104 |
-
target_length, device=device
|
| 105 |
-
) > cache_position.reshape(-1, 1)
|
| 106 |
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 107 |
if attention_mask is not None:
|
| 108 |
-
causal_mask = (
|
| 109 |
-
causal_mask.clone()
|
| 110 |
-
) # copy to contiguous memory for in-place edit
|
| 111 |
mask_length = attention_mask.shape[-1]
|
| 112 |
-
padding_mask =
|
| 113 |
-
causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
| 114 |
-
)
|
| 115 |
padding_mask = padding_mask == 0
|
| 116 |
-
causal_mask[:, :, :, :mask_length] = causal_mask[
|
| 117 |
-
|
| 118 |
-
|
| 119 |
|
| 120 |
return causal_mask
|
| 121 |
|
|
@@ -149,27 +138,17 @@ class Qwen2RotaryEmbedding(nn.Module):
|
|
| 149 |
self.dim = dim
|
| 150 |
self.max_position_embeddings = max_position_embeddings
|
| 151 |
self.base = base
|
| 152 |
-
inv_freq = 1.0 / (
|
| 153 |
-
self.base
|
| 154 |
-
** (
|
| 155 |
-
torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device)
|
| 156 |
-
/ self.dim
|
| 157 |
-
)
|
| 158 |
-
)
|
| 159 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 160 |
|
| 161 |
# Build here to make `torch.jit.trace` work.
|
| 162 |
self._set_cos_sin_cache(
|
| 163 |
-
seq_len=max_position_embeddings,
|
| 164 |
-
device=self.inv_freq.device,
|
| 165 |
-
dtype=torch.get_default_dtype(),
|
| 166 |
)
|
| 167 |
|
| 168 |
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 169 |
self.max_seq_len_cached = seq_len
|
| 170 |
-
t = torch.arange(
|
| 171 |
-
self.max_seq_len_cached, device=device, dtype=torch.int64
|
| 172 |
-
).type_as(self.inv_freq)
|
| 173 |
|
| 174 |
freqs = torch.outer(t, self.inv_freq)
|
| 175 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
|
@@ -237,9 +216,7 @@ class Qwen2MLP(nn.Module):
|
|
| 237 |
self.act_fn = ACT2FN[config.hidden_act]
|
| 238 |
|
| 239 |
def forward(self, hidden_state):
|
| 240 |
-
return self.down_proj(
|
| 241 |
-
self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)
|
| 242 |
-
)
|
| 243 |
|
| 244 |
|
| 245 |
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
|
@@ -251,9 +228,7 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
| 251 |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 252 |
if n_rep == 1:
|
| 253 |
return hidden_states
|
| 254 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(
|
| 255 |
-
batch, num_key_value_heads, n_rep, slen, head_dim
|
| 256 |
-
)
|
| 257 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 258 |
|
| 259 |
|
|
@@ -289,18 +264,10 @@ class Qwen2Attention(nn.Module):
|
|
| 289 |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 290 |
f" and `num_heads`: {self.num_heads})."
|
| 291 |
)
|
| 292 |
-
self.q_proj = nn.Linear(
|
| 293 |
-
|
| 294 |
-
)
|
| 295 |
-
self.
|
| 296 |
-
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
|
| 297 |
-
)
|
| 298 |
-
self.v_proj = nn.Linear(
|
| 299 |
-
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
|
| 300 |
-
)
|
| 301 |
-
self.o_proj = nn.Linear(
|
| 302 |
-
self.num_heads * self.head_dim, self.hidden_size, bias=False
|
| 303 |
-
)
|
| 304 |
|
| 305 |
self.rotary_emb = Qwen2RotaryEmbedding(
|
| 306 |
self.head_dim,
|
|
@@ -324,15 +291,9 @@ class Qwen2Attention(nn.Module):
|
|
| 324 |
key_states = self.k_proj(hidden_states)
|
| 325 |
value_states = self.v_proj(hidden_states)
|
| 326 |
|
| 327 |
-
query_states = query_states.view(
|
| 328 |
-
|
| 329 |
-
).transpose(1, 2)
|
| 330 |
-
key_states = key_states.view(
|
| 331 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 332 |
-
).transpose(1, 2)
|
| 333 |
-
value_states = value_states.view(
|
| 334 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 335 |
-
).transpose(1, 2)
|
| 336 |
|
| 337 |
kv_seq_len = key_states.shape[-2]
|
| 338 |
if past_key_value is not None:
|
|
@@ -344,27 +305,17 @@ class Qwen2Attention(nn.Module):
|
|
| 344 |
)
|
| 345 |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 346 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 347 |
-
query_states, key_states = apply_rotary_pos_emb(
|
| 348 |
-
query_states, key_states, cos, sin, position_ids
|
| 349 |
-
)
|
| 350 |
|
| 351 |
if past_key_value is not None:
|
| 352 |
-
cache_kwargs = {
|
| 353 |
-
|
| 354 |
-
"cos": cos,
|
| 355 |
-
"cache_position": cache_position,
|
| 356 |
-
} # Specific to RoPE models
|
| 357 |
-
key_states, value_states = past_key_value.update(
|
| 358 |
-
key_states, value_states, self.layer_idx, cache_kwargs
|
| 359 |
-
)
|
| 360 |
|
| 361 |
# repeat k/v heads if n_kv_heads < n_heads
|
| 362 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 363 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 364 |
|
| 365 |
-
attn_weights = torch.matmul(
|
| 366 |
-
query_states, key_states.transpose(2, 3)
|
| 367 |
-
) / math.sqrt(self.head_dim)
|
| 368 |
|
| 369 |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 370 |
raise ValueError(
|
|
@@ -377,12 +328,8 @@ class Qwen2Attention(nn.Module):
|
|
| 377 |
attn_weights = attn_weights + causal_mask
|
| 378 |
|
| 379 |
# upcast attention to fp32
|
| 380 |
-
attn_weights = nn.functional.softmax(
|
| 381 |
-
|
| 382 |
-
).to(query_states.dtype)
|
| 383 |
-
attn_weights = nn.functional.dropout(
|
| 384 |
-
attn_weights, p=self.attention_dropout, training=self.training
|
| 385 |
-
)
|
| 386 |
attn_output = torch.matmul(attn_weights, value_states)
|
| 387 |
|
| 388 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
@@ -436,15 +383,9 @@ class Qwen2FlashAttention2(Qwen2Attention):
|
|
| 436 |
key_states = self.k_proj(hidden_states)
|
| 437 |
value_states = self.v_proj(hidden_states)
|
| 438 |
|
| 439 |
-
query_states = query_states.view(
|
| 440 |
-
|
| 441 |
-
).transpose(1, 2)
|
| 442 |
-
key_states = key_states.view(
|
| 443 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 444 |
-
).transpose(1, 2)
|
| 445 |
-
value_states = value_states.view(
|
| 446 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 447 |
-
).transpose(1, 2)
|
| 448 |
|
| 449 |
kv_seq_len = key_states.shape[-2]
|
| 450 |
if past_key_value is not None:
|
|
@@ -458,16 +399,12 @@ class Qwen2FlashAttention2(Qwen2Attention):
|
|
| 458 |
|
| 459 |
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
| 460 |
rotary_seq_len = (
|
| 461 |
-
max(kv_seq_len, position_ids[:, -1].max().item() + 1)
|
| 462 |
-
if position_ids is not None
|
| 463 |
-
else kv_seq_len
|
| 464 |
)
|
| 465 |
|
| 466 |
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
| 467 |
|
| 468 |
-
query_states, key_states = apply_rotary_pos_emb(
|
| 469 |
-
query_states, key_states, cos, sin, position_ids
|
| 470 |
-
)
|
| 471 |
|
| 472 |
if past_key_value is not None:
|
| 473 |
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
|
@@ -493,19 +430,10 @@ class Qwen2FlashAttention2(Qwen2Attention):
|
|
| 493 |
|
| 494 |
if attention_mask is not None:
|
| 495 |
attention_mask = attention_mask[:, slicing_tokens:]
|
| 496 |
-
attention_mask = torch.cat(
|
| 497 |
-
[attention_mask, torch.ones_like(attention_mask[:, -1:])],
|
| 498 |
-
dim=-1,
|
| 499 |
-
)
|
| 500 |
|
| 501 |
-
cache_kwargs = {
|
| 502 |
-
|
| 503 |
-
"cos": cos,
|
| 504 |
-
"cache_position": cache_position,
|
| 505 |
-
} # Specific to RoPE models
|
| 506 |
-
key_states, value_states = past_key_value.update(
|
| 507 |
-
key_states, value_states, self.layer_idx, cache_kwargs
|
| 508 |
-
)
|
| 509 |
|
| 510 |
# repeat k/v heads if n_kv_heads < n_heads
|
| 511 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
@@ -611,34 +539,20 @@ class Qwen2SdpaAttention(Qwen2Attention):
|
|
| 611 |
key_states = self.k_proj(hidden_states)
|
| 612 |
value_states = self.v_proj(hidden_states)
|
| 613 |
|
| 614 |
-
query_states = query_states.view(
|
| 615 |
-
|
| 616 |
-
).transpose(1, 2)
|
| 617 |
-
key_states = key_states.view(
|
| 618 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 619 |
-
).transpose(1, 2)
|
| 620 |
-
value_states = value_states.view(
|
| 621 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
| 622 |
-
).transpose(1, 2)
|
| 623 |
|
| 624 |
kv_seq_len = key_states.shape[-2]
|
| 625 |
if past_key_value is not None:
|
| 626 |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 627 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 628 |
|
| 629 |
-
query_states, key_states = apply_rotary_pos_emb(
|
| 630 |
-
query_states, key_states, cos, sin, position_ids
|
| 631 |
-
)
|
| 632 |
|
| 633 |
if past_key_value is not None:
|
| 634 |
-
cache_kwargs = {
|
| 635 |
-
|
| 636 |
-
"cos": cos,
|
| 637 |
-
"cache_position": cache_position,
|
| 638 |
-
} # Specific to RoPE models
|
| 639 |
-
key_states, value_states = past_key_value.update(
|
| 640 |
-
key_states, value_states, self.layer_idx, cache_kwargs
|
| 641 |
-
)
|
| 642 |
|
| 643 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 644 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
@@ -693,15 +607,11 @@ class Qwen2DecoderLayer(nn.Module):
|
|
| 693 |
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
| 694 |
"unexpected results may be encountered."
|
| 695 |
)
|
| 696 |
-
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](
|
| 697 |
-
config, layer_idx
|
| 698 |
-
)
|
| 699 |
|
| 700 |
self.mlp = Qwen2MLP(config)
|
| 701 |
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 702 |
-
self.post_attention_layernorm = Qwen2RMSNorm(
|
| 703 |
-
config.hidden_size, eps=config.rms_norm_eps
|
| 704 |
-
)
|
| 705 |
|
| 706 |
def forward(
|
| 707 |
self,
|
|
@@ -713,9 +623,7 @@ class Qwen2DecoderLayer(nn.Module):
|
|
| 713 |
use_cache: Optional[bool] = False,
|
| 714 |
cache_position: Optional[torch.LongTensor] = None,
|
| 715 |
**kwargs,
|
| 716 |
-
) -> Tuple[
|
| 717 |
-
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
| 718 |
-
]:
|
| 719 |
"""
|
| 720 |
Args:
|
| 721 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
@@ -902,14 +810,9 @@ class Qwen2Model(Qwen2PreTrainedModel):
|
|
| 902 |
self.padding_idx = config.pad_token_id
|
| 903 |
self.vocab_size = config.vocab_size
|
| 904 |
|
| 905 |
-
self.embed_tokens = nn.Embedding(
|
| 906 |
-
config.vocab_size, config.hidden_size, self.padding_idx
|
| 907 |
-
)
|
| 908 |
self.layers = nn.ModuleList(
|
| 909 |
-
[
|
| 910 |
-
Qwen2DecoderLayer(config, layer_idx)
|
| 911 |
-
for layer_idx in range(config.num_hidden_layers)
|
| 912 |
-
]
|
| 913 |
)
|
| 914 |
self._attn_implementation = config._attn_implementation
|
| 915 |
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
@@ -938,21 +841,13 @@ class Qwen2Model(Qwen2PreTrainedModel):
|
|
| 938 |
return_dict: Optional[bool] = None,
|
| 939 |
cache_position: Optional[torch.LongTensor] = None,
|
| 940 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 941 |
-
output_attentions =
|
| 942 |
-
output_attentions
|
| 943 |
-
if output_attentions is not None
|
| 944 |
-
else self.config.output_attentions
|
| 945 |
-
)
|
| 946 |
output_hidden_states = (
|
| 947 |
-
output_hidden_states
|
| 948 |
-
if output_hidden_states is not None
|
| 949 |
-
else self.config.output_hidden_states
|
| 950 |
)
|
| 951 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 952 |
|
| 953 |
-
return_dict =
|
| 954 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
| 955 |
-
)
|
| 956 |
|
| 957 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 958 |
raise ValueError(
|
|
@@ -979,23 +874,15 @@ class Qwen2Model(Qwen2PreTrainedModel):
|
|
| 979 |
inputs_embeds = self.embed_tokens(input_ids)
|
| 980 |
|
| 981 |
if cache_position is None:
|
| 982 |
-
past_seen_tokens = (
|
| 983 |
-
past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 984 |
-
)
|
| 985 |
cache_position = torch.arange(
|
| 986 |
-
past_seen_tokens,
|
| 987 |
-
past_seen_tokens + inputs_embeds.shape[1],
|
| 988 |
-
device=inputs_embeds.device,
|
| 989 |
)
|
| 990 |
if position_ids is None:
|
| 991 |
position_ids = cache_position.unsqueeze(0)
|
| 992 |
|
| 993 |
causal_mask = self._update_causal_mask(
|
| 994 |
-
attention_mask,
|
| 995 |
-
inputs_embeds,
|
| 996 |
-
cache_position,
|
| 997 |
-
past_key_values,
|
| 998 |
-
output_attentions,
|
| 999 |
)
|
| 1000 |
|
| 1001 |
hidden_states = inputs_embeds
|
|
@@ -1047,18 +934,10 @@ class Qwen2Model(Qwen2PreTrainedModel):
|
|
| 1047 |
|
| 1048 |
next_cache = None
|
| 1049 |
if use_cache:
|
| 1050 |
-
next_cache = (
|
| 1051 |
-
next_decoder_cache.to_legacy_cache()
|
| 1052 |
-
if use_legacy_cache
|
| 1053 |
-
else next_decoder_cache
|
| 1054 |
-
)
|
| 1055 |
|
| 1056 |
if not return_dict:
|
| 1057 |
-
return tuple(
|
| 1058 |
-
v
|
| 1059 |
-
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
| 1060 |
-
if v is not None
|
| 1061 |
-
)
|
| 1062 |
return BaseModelOutputWithPast(
|
| 1063 |
last_hidden_state=hidden_states,
|
| 1064 |
past_key_values=next_cache,
|
|
@@ -1088,17 +967,11 @@ class Qwen2Model(Qwen2PreTrainedModel):
|
|
| 1088 |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 1089 |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 1090 |
# to infer the attention mask.
|
| 1091 |
-
past_seen_tokens = (
|
| 1092 |
-
past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1093 |
-
)
|
| 1094 |
using_static_cache = False # isinstance(past_key_values, StaticCache)
|
| 1095 |
|
| 1096 |
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 1097 |
-
if
|
| 1098 |
-
self.config._attn_implementation == "sdpa"
|
| 1099 |
-
and not using_static_cache
|
| 1100 |
-
and not output_attentions
|
| 1101 |
-
):
|
| 1102 |
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 1103 |
attention_mask,
|
| 1104 |
inputs_embeds=input_tensor,
|
|
@@ -1140,9 +1013,7 @@ class Qwen2Model(Qwen2PreTrainedModel):
|
|
| 1140 |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 1141 |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 1142 |
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 1143 |
-
causal_mask = AttentionMaskConverter._unmask_unattended(
|
| 1144 |
-
causal_mask, min_dtype
|
| 1145 |
-
)
|
| 1146 |
|
| 1147 |
return causal_mask
|
| 1148 |
|
|
@@ -1178,9 +1049,7 @@ class Qwen2ForCausalLM(Qwen2PreTrainedModel):
|
|
| 1178 |
return self.model
|
| 1179 |
|
| 1180 |
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
| 1181 |
-
@replace_return_docstrings(
|
| 1182 |
-
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
| 1183 |
-
)
|
| 1184 |
def forward(
|
| 1185 |
self,
|
| 1186 |
input_ids: torch.LongTensor = None,
|
|
@@ -1221,19 +1090,11 @@ class Qwen2ForCausalLM(Qwen2PreTrainedModel):
|
|
| 1221 |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1222 |
```"""
|
| 1223 |
|
| 1224 |
-
output_attentions =
|
| 1225 |
-
output_attentions
|
| 1226 |
-
if output_attentions is not None
|
| 1227 |
-
else self.config.output_attentions
|
| 1228 |
-
)
|
| 1229 |
output_hidden_states = (
|
| 1230 |
-
output_hidden_states
|
| 1231 |
-
if output_hidden_states is not None
|
| 1232 |
-
else self.config.output_hidden_states
|
| 1233 |
-
)
|
| 1234 |
-
return_dict = (
|
| 1235 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1236 |
)
|
|
|
|
| 1237 |
|
| 1238 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1239 |
outputs = self.model(
|
|
@@ -1296,9 +1157,7 @@ class Qwen2ForCausalLM(Qwen2PreTrainedModel):
|
|
| 1296 |
if past_key_values is not None:
|
| 1297 |
if inputs_embeds is not None: # Exception 1
|
| 1298 |
input_ids = input_ids[:, -cache_position.shape[0] :]
|
| 1299 |
-
elif (
|
| 1300 |
-
input_ids.shape[1] != cache_position.shape[0]
|
| 1301 |
-
): # Default case (the "else", a no op, is Exception 2)
|
| 1302 |
input_ids = input_ids[:, cache_position]
|
| 1303 |
|
| 1304 |
if attention_mask is not None and position_ids is None:
|
|
@@ -1317,11 +1176,7 @@ class Qwen2ForCausalLM(Qwen2PreTrainedModel):
|
|
| 1317 |
else:
|
| 1318 |
model_inputs = {"input_ids": input_ids}
|
| 1319 |
|
| 1320 |
-
if (
|
| 1321 |
-
False
|
| 1322 |
-
and isinstance(past_key_values, StaticCache)
|
| 1323 |
-
and attention_mask.ndim == 2
|
| 1324 |
-
):
|
| 1325 |
if inputs_embeds is not None:
|
| 1326 |
batch_size, sequence_length = inputs_embeds.shape
|
| 1327 |
device = inputs_embeds.device
|
|
@@ -1406,9 +1261,7 @@ class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
|
|
| 1406 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1407 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1408 |
"""
|
| 1409 |
-
return_dict =
|
| 1410 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1411 |
-
)
|
| 1412 |
|
| 1413 |
transformer_outputs = self.model(
|
| 1414 |
input_ids,
|
|
@@ -1430,25 +1283,19 @@ class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
|
|
| 1430 |
batch_size = inputs_embeds.shape[0]
|
| 1431 |
|
| 1432 |
if self.config.pad_token_id is None and batch_size != 1:
|
| 1433 |
-
raise ValueError(
|
| 1434 |
-
"Cannot handle batch sizes > 1 if no padding token is defined."
|
| 1435 |
-
)
|
| 1436 |
if self.config.pad_token_id is None:
|
| 1437 |
sequence_lengths = -1
|
| 1438 |
else:
|
| 1439 |
if input_ids is not None:
|
| 1440 |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1441 |
-
sequence_lengths = (
|
| 1442 |
-
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
| 1443 |
-
)
|
| 1444 |
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1445 |
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1446 |
else:
|
| 1447 |
sequence_lengths = -1
|
| 1448 |
|
| 1449 |
-
pooled_logits = logits[
|
| 1450 |
-
torch.arange(batch_size, device=logits.device), sequence_lengths
|
| 1451 |
-
]
|
| 1452 |
|
| 1453 |
loss = None
|
| 1454 |
if labels is not None:
|
|
@@ -1456,9 +1303,7 @@ class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
|
|
| 1456 |
if self.config.problem_type is None:
|
| 1457 |
if self.num_labels == 1:
|
| 1458 |
self.config.problem_type = "regression"
|
| 1459 |
-
elif self.num_labels > 1 and (
|
| 1460 |
-
labels.dtype == torch.long or labels.dtype == torch.int
|
| 1461 |
-
):
|
| 1462 |
self.config.problem_type = "single_label_classification"
|
| 1463 |
else:
|
| 1464 |
self.config.problem_type = "multi_label_classification"
|
|
@@ -1471,9 +1316,7 @@ class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
|
|
| 1471 |
loss = loss_fct(pooled_logits, labels)
|
| 1472 |
elif self.config.problem_type == "single_label_classification":
|
| 1473 |
loss_fct = CrossEntropyLoss()
|
| 1474 |
-
loss = loss_fct(
|
| 1475 |
-
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
| 1476 |
-
)
|
| 1477 |
elif self.config.problem_type == "multi_label_classification":
|
| 1478 |
loss_fct = BCEWithLogitsLoss()
|
| 1479 |
loss = loss_fct(pooled_logits, labels)
|
|
@@ -1541,9 +1384,7 @@ class Qwen2ForTokenClassification(Qwen2PreTrainedModel):
|
|
| 1541 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1542 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1543 |
"""
|
| 1544 |
-
return_dict =
|
| 1545 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1546 |
-
)
|
| 1547 |
|
| 1548 |
outputs = self.model(
|
| 1549 |
input_ids,
|
|
@@ -1604,7 +1445,7 @@ class Qwen2ForEnsemblePRM(Qwen2PreTrainedModel):
|
|
| 1604 |
encoding_dim=config.hidden_size,
|
| 1605 |
num_ensemble=config.num_ensemble,
|
| 1606 |
)
|
| 1607 |
-
self.score.init()
|
| 1608 |
# Initialize weights and apply final processing
|
| 1609 |
self.post_init()
|
| 1610 |
|
|
@@ -1621,7 +1462,7 @@ class Qwen2ForEnsemblePRM(Qwen2PreTrainedModel):
|
|
| 1621 |
outputs.logits = torch.nn.functional.sigmoid(outputs.logits)
|
| 1622 |
return outputs
|
| 1623 |
|
| 1624 |
-
def _compute_loss(self, logits, labels):
|
| 1625 |
# NOTE: we only compute the loss for specific position (labels != -100)
|
| 1626 |
logits = logits.float()
|
| 1627 |
loss = None
|
|
@@ -1630,23 +1471,21 @@ class Qwen2ForEnsemblePRM(Qwen2PreTrainedModel):
|
|
| 1630 |
# only support hard labels; not need for soft labels
|
| 1631 |
loss_fct = BCEWithLogitsLoss(reduction="none")
|
| 1632 |
|
| 1633 |
-
loss = loss_fct(
|
| 1634 |
-
logits, labels[None].repeat([logits.size(0), 1, 1]).to(logits.dtype)
|
| 1635 |
-
)
|
| 1636 |
# select loss for specific position
|
| 1637 |
mask = (labels != -100)[None].repeat([logits.size(0), 1, 1])
|
| 1638 |
# and random mask instance for differnet ensemble model
|
| 1639 |
-
data_aloc_mask = (
|
| 1640 |
-
torch.rand(mask.size(0), mask.size(1)) < self.learning_probability
|
| 1641 |
-
)
|
| 1642 |
mask = mask & data_aloc_mask[:, :, None].to(mask.device)
|
| 1643 |
|
| 1644 |
loss = torch.masked_select(loss, mask)
|
| 1645 |
loss = loss.mean()
|
| 1646 |
-
|
| 1647 |
-
|
| 1648 |
-
|
| 1649 |
-
|
|
|
|
|
|
|
| 1650 |
|
| 1651 |
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
| 1652 |
def forward(
|
|
@@ -1662,9 +1501,7 @@ class Qwen2ForEnsemblePRM(Qwen2PreTrainedModel):
|
|
| 1662 |
output_hidden_states: Optional[bool] = None,
|
| 1663 |
return_dict: Optional[bool] = None,
|
| 1664 |
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1665 |
-
return_dict =
|
| 1666 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1667 |
-
)
|
| 1668 |
|
| 1669 |
transformer_outputs = self.model(
|
| 1670 |
input_ids,
|
|
@@ -1678,9 +1515,7 @@ class Qwen2ForEnsemblePRM(Qwen2PreTrainedModel):
|
|
| 1678 |
return_dict=return_dict,
|
| 1679 |
)
|
| 1680 |
hidden_states = transformer_outputs[0] # (b, l, h)
|
| 1681 |
-
hidden_states = hidden_states[None, :, :, :].repeat(
|
| 1682 |
-
self.score.num_ensemble, 1, 1, 1
|
| 1683 |
-
) # (e, l, h)
|
| 1684 |
logits = self.score(hidden_states)
|
| 1685 |
|
| 1686 |
if input_ids is not None:
|
|
@@ -1689,17 +1524,13 @@ class Qwen2ForEnsemblePRM(Qwen2PreTrainedModel):
|
|
| 1689 |
batch_size = inputs_embeds.shape[0]
|
| 1690 |
|
| 1691 |
if self.config.pad_token_id is None and batch_size != 1:
|
| 1692 |
-
raise ValueError(
|
| 1693 |
-
"Cannot handle batch sizes > 1 if no padding token is defined."
|
| 1694 |
-
)
|
| 1695 |
if self.config.pad_token_id is None:
|
| 1696 |
sequence_lengths = -1
|
| 1697 |
else:
|
| 1698 |
if input_ids is not None:
|
| 1699 |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1700 |
-
sequence_lengths = (
|
| 1701 |
-
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
| 1702 |
-
)
|
| 1703 |
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1704 |
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1705 |
else:
|
|
@@ -1707,9 +1538,7 @@ class Qwen2ForEnsemblePRM(Qwen2PreTrainedModel):
|
|
| 1707 |
|
| 1708 |
logits = logits.float()
|
| 1709 |
loss = None
|
| 1710 |
-
logits = logits.squeeze(
|
| 1711 |
-
-1
|
| 1712 |
-
) # (ensemble, batch_size, seq_len, 1) -> (ensemble, batch_size, seq_len)
|
| 1713 |
if labels is not None:
|
| 1714 |
if self.config.problem_type is None: # NOTE: no use
|
| 1715 |
if labels.dtype is not torch.long:
|
|
@@ -1721,24 +1550,16 @@ class Qwen2ForEnsemblePRM(Qwen2PreTrainedModel):
|
|
| 1721 |
# only support hard labels; not need for soft labels
|
| 1722 |
loss_fct = BCEWithLogitsLoss(reduction="none")
|
| 1723 |
|
| 1724 |
-
loss = loss_fct(
|
| 1725 |
-
logits, labels[None].repeat([logits.size(0), 1, 1]).to(logits.dtype)
|
| 1726 |
-
)
|
| 1727 |
# select loss for specific position
|
| 1728 |
mask = (labels != -100)[None].repeat([logits.size(0), 1, 1])
|
| 1729 |
# and random mask instance for differnet ensemble model
|
| 1730 |
-
data_aloc_mask = (
|
| 1731 |
-
torch.rand(mask.size(0), mask.size(1)) < self.learning_probability
|
| 1732 |
-
)
|
| 1733 |
mask = mask & data_aloc_mask[:, :, None].to(mask.device)
|
| 1734 |
|
| 1735 |
loss = torch.masked_select(loss, mask)
|
| 1736 |
loss = loss.mean()
|
| 1737 |
-
loss += (
|
| 1738 |
-
self.regularization_lambda
|
| 1739 |
-
* labels.size(0)
|
| 1740 |
-
* self.score.regularization()
|
| 1741 |
-
)
|
| 1742 |
|
| 1743 |
if not return_dict:
|
| 1744 |
output = (logits,) + transformer_outputs[1:]
|
|
|
|
| 40 |
is_flash_attn_greater_or_equal_2_10, logging,
|
| 41 |
replace_return_docstrings)
|
| 42 |
|
| 43 |
+
from ..nets import EnsembleModel
|
| 44 |
from .configuration_qwen2 import QwenEnPRMConfig as Qwen2Config
|
|
|
|
| 45 |
|
| 46 |
if is_flash_attn_2_available():
|
| 47 |
from transformers.modeling_flash_attention_utils import \
|
|
|
|
| 92 |
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 93 |
causal_mask = attention_mask
|
| 94 |
else:
|
| 95 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
if sequence_length != 1:
|
| 97 |
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 98 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
|
|
|
|
|
|
| 99 |
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 100 |
if attention_mask is not None:
|
| 101 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
|
|
|
|
|
|
| 102 |
mask_length = attention_mask.shape[-1]
|
| 103 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
|
|
|
|
|
|
| 104 |
padding_mask = padding_mask == 0
|
| 105 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 106 |
+
padding_mask, min_dtype
|
| 107 |
+
)
|
| 108 |
|
| 109 |
return causal_mask
|
| 110 |
|
|
|
|
| 138 |
self.dim = dim
|
| 139 |
self.max_position_embeddings = max_position_embeddings
|
| 140 |
self.base = base
|
| 141 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 143 |
|
| 144 |
# Build here to make `torch.jit.trace` work.
|
| 145 |
self._set_cos_sin_cache(
|
| 146 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
|
|
|
|
|
|
| 147 |
)
|
| 148 |
|
| 149 |
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 150 |
self.max_seq_len_cached = seq_len
|
| 151 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
|
|
|
|
|
|
| 152 |
|
| 153 |
freqs = torch.outer(t, self.inv_freq)
|
| 154 |
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
|
|
|
| 216 |
self.act_fn = ACT2FN[config.hidden_act]
|
| 217 |
|
| 218 |
def forward(self, hidden_state):
|
| 219 |
+
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
|
|
|
|
|
|
| 220 |
|
| 221 |
|
| 222 |
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
|
|
|
| 228 |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 229 |
if n_rep == 1:
|
| 230 |
return hidden_states
|
| 231 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
|
|
|
|
|
|
| 232 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 233 |
|
| 234 |
|
|
|
|
| 264 |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 265 |
f" and `num_heads`: {self.num_heads})."
|
| 266 |
)
|
| 267 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
| 268 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
| 269 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
| 270 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
self.rotary_emb = Qwen2RotaryEmbedding(
|
| 273 |
self.head_dim,
|
|
|
|
| 291 |
key_states = self.k_proj(hidden_states)
|
| 292 |
value_states = self.v_proj(hidden_states)
|
| 293 |
|
| 294 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 295 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 296 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
kv_seq_len = key_states.shape[-2]
|
| 299 |
if past_key_value is not None:
|
|
|
|
| 305 |
)
|
| 306 |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 307 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 308 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
|
|
|
| 309 |
|
| 310 |
if past_key_value is not None:
|
| 311 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
| 312 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
|
| 314 |
# repeat k/v heads if n_kv_heads < n_heads
|
| 315 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 316 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 317 |
|
| 318 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
|
|
|
|
|
| 319 |
|
| 320 |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 321 |
raise ValueError(
|
|
|
|
| 328 |
attn_weights = attn_weights + causal_mask
|
| 329 |
|
| 330 |
# upcast attention to fp32
|
| 331 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 332 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
attn_output = torch.matmul(attn_weights, value_states)
|
| 334 |
|
| 335 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
|
|
| 383 |
key_states = self.k_proj(hidden_states)
|
| 384 |
value_states = self.v_proj(hidden_states)
|
| 385 |
|
| 386 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 387 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 388 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
|
| 390 |
kv_seq_len = key_states.shape[-2]
|
| 391 |
if past_key_value is not None:
|
|
|
|
| 399 |
|
| 400 |
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
| 401 |
rotary_seq_len = (
|
| 402 |
+
max(kv_seq_len, position_ids[:, -1].max().item() + 1) if position_ids is not None else kv_seq_len
|
|
|
|
|
|
|
| 403 |
)
|
| 404 |
|
| 405 |
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
| 406 |
|
| 407 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
|
|
|
| 408 |
|
| 409 |
if past_key_value is not None:
|
| 410 |
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
|
|
|
| 430 |
|
| 431 |
if attention_mask is not None:
|
| 432 |
attention_mask = attention_mask[:, slicing_tokens:]
|
| 433 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
|
|
|
|
|
|
|
|
|
| 434 |
|
| 435 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
| 436 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
|
| 438 |
# repeat k/v heads if n_kv_heads < n_heads
|
| 439 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
|
|
| 539 |
key_states = self.k_proj(hidden_states)
|
| 540 |
value_states = self.v_proj(hidden_states)
|
| 541 |
|
| 542 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 543 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 544 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 545 |
|
| 546 |
kv_seq_len = key_states.shape[-2]
|
| 547 |
if past_key_value is not None:
|
| 548 |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 549 |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 550 |
|
| 551 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
|
|
|
| 552 |
|
| 553 |
if past_key_value is not None:
|
| 554 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
| 555 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 556 |
|
| 557 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 558 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
| 607 |
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
| 608 |
"unexpected results may be encountered."
|
| 609 |
)
|
| 610 |
+
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
|
|
|
|
|
|
| 611 |
|
| 612 |
self.mlp = Qwen2MLP(config)
|
| 613 |
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 614 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
|
|
|
| 615 |
|
| 616 |
def forward(
|
| 617 |
self,
|
|
|
|
| 623 |
use_cache: Optional[bool] = False,
|
| 624 |
cache_position: Optional[torch.LongTensor] = None,
|
| 625 |
**kwargs,
|
| 626 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
|
|
|
|
|
| 627 |
"""
|
| 628 |
Args:
|
| 629 |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
|
|
| 810 |
self.padding_idx = config.pad_token_id
|
| 811 |
self.vocab_size = config.vocab_size
|
| 812 |
|
| 813 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
|
|
|
|
|
| 814 |
self.layers = nn.ModuleList(
|
| 815 |
+
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
|
|
|
|
|
|
|
|
| 816 |
)
|
| 817 |
self._attn_implementation = config._attn_implementation
|
| 818 |
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
| 841 |
return_dict: Optional[bool] = None,
|
| 842 |
cache_position: Optional[torch.LongTensor] = None,
|
| 843 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 844 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
|
|
|
|
|
|
|
|
|
| 845 |
output_hidden_states = (
|
| 846 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
|
|
|
| 847 |
)
|
| 848 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 849 |
|
| 850 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
| 851 |
|
| 852 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 853 |
raise ValueError(
|
|
|
|
| 874 |
inputs_embeds = self.embed_tokens(input_ids)
|
| 875 |
|
| 876 |
if cache_position is None:
|
| 877 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
|
|
|
|
|
| 878 |
cache_position = torch.arange(
|
| 879 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
|
|
|
|
|
| 880 |
)
|
| 881 |
if position_ids is None:
|
| 882 |
position_ids = cache_position.unsqueeze(0)
|
| 883 |
|
| 884 |
causal_mask = self._update_causal_mask(
|
| 885 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
|
|
|
|
|
|
|
|
|
|
|
|
| 886 |
)
|
| 887 |
|
| 888 |
hidden_states = inputs_embeds
|
|
|
|
| 934 |
|
| 935 |
next_cache = None
|
| 936 |
if use_cache:
|
| 937 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
| 938 |
|
| 939 |
if not return_dict:
|
| 940 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 941 |
return BaseModelOutputWithPast(
|
| 942 |
last_hidden_state=hidden_states,
|
| 943 |
past_key_values=next_cache,
|
|
|
|
| 967 |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 968 |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 969 |
# to infer the attention mask.
|
| 970 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
|
|
|
|
|
| 971 |
using_static_cache = False # isinstance(past_key_values, StaticCache)
|
| 972 |
|
| 973 |
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 974 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 975 |
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 976 |
attention_mask,
|
| 977 |
inputs_embeds=input_tensor,
|
|
|
|
| 1013 |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 1014 |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 1015 |
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 1016 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
|
|
|
|
|
|
| 1017 |
|
| 1018 |
return causal_mask
|
| 1019 |
|
|
|
|
| 1049 |
return self.model
|
| 1050 |
|
| 1051 |
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
| 1052 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
|
|
|
|
|
| 1053 |
def forward(
|
| 1054 |
self,
|
| 1055 |
input_ids: torch.LongTensor = None,
|
|
|
|
| 1090 |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1091 |
```"""
|
| 1092 |
|
| 1093 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1094 |
output_hidden_states = (
|
| 1095 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1096 |
)
|
| 1097 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1098 |
|
| 1099 |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1100 |
outputs = self.model(
|
|
|
|
| 1157 |
if past_key_values is not None:
|
| 1158 |
if inputs_embeds is not None: # Exception 1
|
| 1159 |
input_ids = input_ids[:, -cache_position.shape[0] :]
|
| 1160 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
|
|
|
|
|
|
| 1161 |
input_ids = input_ids[:, cache_position]
|
| 1162 |
|
| 1163 |
if attention_mask is not None and position_ids is None:
|
|
|
|
| 1176 |
else:
|
| 1177 |
model_inputs = {"input_ids": input_ids}
|
| 1178 |
|
| 1179 |
+
if False and isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1180 |
if inputs_embeds is not None:
|
| 1181 |
batch_size, sequence_length = inputs_embeds.shape
|
| 1182 |
device = inputs_embeds.device
|
|
|
|
| 1261 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1262 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1263 |
"""
|
| 1264 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
| 1265 |
|
| 1266 |
transformer_outputs = self.model(
|
| 1267 |
input_ids,
|
|
|
|
| 1283 |
batch_size = inputs_embeds.shape[0]
|
| 1284 |
|
| 1285 |
if self.config.pad_token_id is None and batch_size != 1:
|
| 1286 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
|
|
|
|
|
|
| 1287 |
if self.config.pad_token_id is None:
|
| 1288 |
sequence_lengths = -1
|
| 1289 |
else:
|
| 1290 |
if input_ids is not None:
|
| 1291 |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1292 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
|
|
|
|
|
|
| 1293 |
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1294 |
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1295 |
else:
|
| 1296 |
sequence_lengths = -1
|
| 1297 |
|
| 1298 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
|
|
|
| 1299 |
|
| 1300 |
loss = None
|
| 1301 |
if labels is not None:
|
|
|
|
| 1303 |
if self.config.problem_type is None:
|
| 1304 |
if self.num_labels == 1:
|
| 1305 |
self.config.problem_type = "regression"
|
| 1306 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
|
|
|
|
|
| 1307 |
self.config.problem_type = "single_label_classification"
|
| 1308 |
else:
|
| 1309 |
self.config.problem_type = "multi_label_classification"
|
|
|
|
| 1316 |
loss = loss_fct(pooled_logits, labels)
|
| 1317 |
elif self.config.problem_type == "single_label_classification":
|
| 1318 |
loss_fct = CrossEntropyLoss()
|
| 1319 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
|
|
|
| 1320 |
elif self.config.problem_type == "multi_label_classification":
|
| 1321 |
loss_fct = BCEWithLogitsLoss()
|
| 1322 |
loss = loss_fct(pooled_logits, labels)
|
|
|
|
| 1384 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1385 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1386 |
"""
|
| 1387 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
| 1388 |
|
| 1389 |
outputs = self.model(
|
| 1390 |
input_ids,
|
|
|
|
| 1445 |
encoding_dim=config.hidden_size,
|
| 1446 |
num_ensemble=config.num_ensemble,
|
| 1447 |
)
|
| 1448 |
+
# self.score.init()
|
| 1449 |
# Initialize weights and apply final processing
|
| 1450 |
self.post_init()
|
| 1451 |
|
|
|
|
| 1462 |
outputs.logits = torch.nn.functional.sigmoid(outputs.logits)
|
| 1463 |
return outputs
|
| 1464 |
|
| 1465 |
+
def _compute_loss(self, logits, labels, return_reg_loss=False):
|
| 1466 |
# NOTE: we only compute the loss for specific position (labels != -100)
|
| 1467 |
logits = logits.float()
|
| 1468 |
loss = None
|
|
|
|
| 1471 |
# only support hard labels; not need for soft labels
|
| 1472 |
loss_fct = BCEWithLogitsLoss(reduction="none")
|
| 1473 |
|
| 1474 |
+
loss = loss_fct(logits, labels[None].repeat([logits.size(0), 1, 1]).to(logits.dtype))
|
|
|
|
|
|
|
| 1475 |
# select loss for specific position
|
| 1476 |
mask = (labels != -100)[None].repeat([logits.size(0), 1, 1])
|
| 1477 |
# and random mask instance for differnet ensemble model
|
| 1478 |
+
data_aloc_mask = torch.rand(mask.size(0), mask.size(1)) < self.learning_probability
|
|
|
|
|
|
|
| 1479 |
mask = mask & data_aloc_mask[:, :, None].to(mask.device)
|
| 1480 |
|
| 1481 |
loss = torch.masked_select(loss, mask)
|
| 1482 |
loss = loss.mean()
|
| 1483 |
+
reg_loss = self.regularization_lambda * self.score.regularization()
|
| 1484 |
+
loss += reg_loss
|
| 1485 |
+
if not return_reg_loss:
|
| 1486 |
+
return loss
|
| 1487 |
+
else:
|
| 1488 |
+
return (loss, reg_loss)
|
| 1489 |
|
| 1490 |
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
| 1491 |
def forward(
|
|
|
|
| 1501 |
output_hidden_states: Optional[bool] = None,
|
| 1502 |
return_dict: Optional[bool] = None,
|
| 1503 |
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1504 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
| 1505 |
|
| 1506 |
transformer_outputs = self.model(
|
| 1507 |
input_ids,
|
|
|
|
| 1515 |
return_dict=return_dict,
|
| 1516 |
)
|
| 1517 |
hidden_states = transformer_outputs[0] # (b, l, h)
|
| 1518 |
+
hidden_states = hidden_states[None, :, :, :].repeat(self.score.num_ensemble, 1, 1, 1) # (e, l, h)
|
|
|
|
|
|
|
| 1519 |
logits = self.score(hidden_states)
|
| 1520 |
|
| 1521 |
if input_ids is not None:
|
|
|
|
| 1524 |
batch_size = inputs_embeds.shape[0]
|
| 1525 |
|
| 1526 |
if self.config.pad_token_id is None and batch_size != 1:
|
| 1527 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
|
|
|
|
|
|
| 1528 |
if self.config.pad_token_id is None:
|
| 1529 |
sequence_lengths = -1
|
| 1530 |
else:
|
| 1531 |
if input_ids is not None:
|
| 1532 |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1533 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
|
|
|
|
|
|
| 1534 |
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1535 |
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1536 |
else:
|
|
|
|
| 1538 |
|
| 1539 |
logits = logits.float()
|
| 1540 |
loss = None
|
| 1541 |
+
logits = logits.squeeze(-1) # (ensemble, batch_size, seq_len, 1) -> (ensemble, batch_size, seq_len)
|
|
|
|
|
|
|
| 1542 |
if labels is not None:
|
| 1543 |
if self.config.problem_type is None: # NOTE: no use
|
| 1544 |
if labels.dtype is not torch.long:
|
|
|
|
| 1550 |
# only support hard labels; not need for soft labels
|
| 1551 |
loss_fct = BCEWithLogitsLoss(reduction="none")
|
| 1552 |
|
| 1553 |
+
loss = loss_fct(logits, labels[None].repeat([logits.size(0), 1, 1]).to(logits.dtype))
|
|
|
|
|
|
|
| 1554 |
# select loss for specific position
|
| 1555 |
mask = (labels != -100)[None].repeat([logits.size(0), 1, 1])
|
| 1556 |
# and random mask instance for differnet ensemble model
|
| 1557 |
+
data_aloc_mask = torch.rand(mask.size(0), mask.size(1)) < self.learning_probability
|
|
|
|
|
|
|
| 1558 |
mask = mask & data_aloc_mask[:, :, None].to(mask.device)
|
| 1559 |
|
| 1560 |
loss = torch.masked_select(loss, mask)
|
| 1561 |
loss = loss.mean()
|
| 1562 |
+
loss += self.regularization_lambda * labels.size(0) * self.score.regularization()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1563 |
|
| 1564 |
if not return_dict:
|
| 1565 |
output = (logits,) + transformer_outputs[1:]
|