Upload nets.py
Browse files
nets.py
CHANGED
|
@@ -14,6 +14,8 @@
|
|
| 14 |
|
| 15 |
"""Deep networks."""
|
| 16 |
|
|
|
|
|
|
|
| 17 |
import numpy as np
|
| 18 |
import torch
|
| 19 |
import torch.nn.functional as F
|
|
@@ -131,10 +133,14 @@ class EnsembleFC(nn.Module):
|
|
| 131 |
return torch.add(wx, self.bias[:, None, None, :]) # w times x + b
|
| 132 |
|
| 133 |
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
def __init__(self, encoding_dim, num_ensemble, hidden_dim=128, activation="relu", dtype=torch.float32) -> None:
|
| 136 |
# super().__init__(encoding_dim, hidden_dim, activation)
|
| 137 |
-
super(
|
| 138 |
self.num_ensemble = num_ensemble
|
| 139 |
self.hidden_dim = hidden_dim
|
| 140 |
self.output_dim = 1
|
|
@@ -152,23 +158,34 @@ class EnsembleModel(nn.Module):
|
|
| 152 |
else:
|
| 153 |
raise ValueError(f"Unknown activation {activation}")
|
| 154 |
|
| 155 |
-
def get_params(self) -> torch.Tensor:
|
| 156 |
-
params = []
|
| 157 |
-
for pp in list(self.parameters()):
|
| 158 |
-
params.append(pp.view(-1))
|
| 159 |
-
return torch.cat(params)
|
| 160 |
-
|
| 161 |
def forward(self, encoding: torch.Tensor) -> torch.Tensor:
|
| 162 |
x = self.activation(self.nn1(encoding))
|
| 163 |
x = self.activation(self.nn2(x))
|
| 164 |
score = self.nn_out(x)
|
| 165 |
return score
|
| 166 |
|
| 167 |
-
def init(self):
|
| 168 |
-
self.init_params = self.get_params().data.clone()
|
| 169 |
-
if torch.cuda.is_available():
|
| 170 |
-
self.init_params = self.init_params.cuda()
|
| 171 |
-
|
| 172 |
def regularization(self):
|
| 173 |
"""Prior towards independent initialization."""
|
| 174 |
return ((self.get_params() - self.init_params) ** 2).mean()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
"""Deep networks."""
|
| 16 |
|
| 17 |
+
from copy import deepcopy
|
| 18 |
+
|
| 19 |
import numpy as np
|
| 20 |
import torch
|
| 21 |
import torch.nn.functional as F
|
|
|
|
| 133 |
return torch.add(wx, self.bias[:, None, None, :]) # w times x + b
|
| 134 |
|
| 135 |
|
| 136 |
+
def get_params(model):
|
| 137 |
+
return torch.cat([p.view(-1) for p in model.parameters()])
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
class _EnsembleModel(nn.Module):
|
| 141 |
def __init__(self, encoding_dim, num_ensemble, hidden_dim=128, activation="relu", dtype=torch.float32) -> None:
|
| 142 |
# super().__init__(encoding_dim, hidden_dim, activation)
|
| 143 |
+
super(_EnsembleModel, self).__init__()
|
| 144 |
self.num_ensemble = num_ensemble
|
| 145 |
self.hidden_dim = hidden_dim
|
| 146 |
self.output_dim = 1
|
|
|
|
| 158 |
else:
|
| 159 |
raise ValueError(f"Unknown activation {activation}")
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
def forward(self, encoding: torch.Tensor) -> torch.Tensor:
|
| 162 |
x = self.activation(self.nn1(encoding))
|
| 163 |
x = self.activation(self.nn2(x))
|
| 164 |
score = self.nn_out(x)
|
| 165 |
return score
|
| 166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
def regularization(self):
|
| 168 |
"""Prior towards independent initialization."""
|
| 169 |
return ((self.get_params() - self.init_params) ** 2).mean()
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
class EnsembleModel(nn.Module):
|
| 173 |
+
def __init__(self, encoding_dim, num_ensemble, hidden_dim=128, activation="relu", dtype=torch.float32) -> None:
|
| 174 |
+
super(EnsembleModel, self).__init__()
|
| 175 |
+
self.encoding_dim = encoding_dim
|
| 176 |
+
self.num_ensemble = num_ensemble
|
| 177 |
+
self.hidden_dim = hidden_dim
|
| 178 |
+
self.model = _EnsembleModel(encoding_dim, num_ensemble, hidden_dim, activation, dtype)
|
| 179 |
+
self.reg_model = deepcopy(self.model) # only used for regularization
|
| 180 |
+
# freeze the reg model
|
| 181 |
+
for param in self.reg_model.parameters():
|
| 182 |
+
param.requires_grad = False
|
| 183 |
+
|
| 184 |
+
def forward(self, encoding: torch.Tensor) -> torch.Tensor:
|
| 185 |
+
return self.model(encoding)
|
| 186 |
+
|
| 187 |
+
def regularization(self):
|
| 188 |
+
"""Prior towards independent initialization."""
|
| 189 |
+
model_params = get_params(self.model)
|
| 190 |
+
reg_params = get_params(self.reg_model).detach()
|
| 191 |
+
return ((model_params - reg_params) ** 2).mean()
|