deberta-v3-base-uner-down-synth400

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1225
  • F1: 0.7274
  • Precision: 0.6706
  • Recall: 0.7946
  • Accuracy: 0.9784

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
0.3736 0.8 20 0.2035 0.0482 0.1176 0.0303 0.9431
0.2416 1.6 40 0.1315 0.3044 0.2724 0.3449 0.9559
0.0684 2.4 60 0.1027 0.4766 0.4303 0.5341 0.9668
0.0588 3.2 80 0.0881 0.6067 0.5490 0.6778 0.9733
0.1194 4.0 100 0.0851 0.6805 0.6521 0.7114 0.9766
0.014 4.8 120 0.0800 0.7078 0.6512 0.7751 0.9769
0.0572 5.6 140 0.0815 0.7228 0.6882 0.7611 0.9788
0.0059 6.4 160 0.0910 0.7016 0.6408 0.7751 0.9767
0.0079 7.2 180 0.0946 0.6864 0.6237 0.7632 0.9760
0.0152 8.0 200 0.0981 0.7107 0.6494 0.7849 0.9760
0.0169 8.8 220 0.0954 0.702 0.6530 0.7589 0.9771
0.0027 9.6 240 0.0983 0.7214 0.6984 0.7459 0.9775
0.0107 10.4 260 0.1050 0.7141 0.6544 0.7859 0.9773
0.0029 11.2 280 0.1072 0.7139 0.6555 0.7838 0.9773
0.0056 12.0 300 0.1075 0.7216 0.6670 0.7859 0.9777
0.0048 12.8 320 0.1109 0.7245 0.6628 0.7989 0.9775
0.0033 13.6 340 0.1133 0.7242 0.6691 0.7892 0.9773
0.0021 14.4 360 0.1098 0.7247 0.6916 0.7611 0.9784
0.0057 15.2 380 0.1131 0.7223 0.6652 0.7903 0.9779
0.0014 16.0 400 0.1113 0.7319 0.6889 0.7805 0.9789
0.0098 16.8 420 0.1140 0.7207 0.6670 0.7838 0.9778
0.0019 17.6 440 0.1162 0.7177 0.6612 0.7849 0.9778
0.001 18.4 460 0.1194 0.7259 0.6682 0.7946 0.9780
0.0009 19.2 480 0.1174 0.7307 0.6860 0.7816 0.9784
0.001 20.0 500 0.1219 0.7267 0.6673 0.7978 0.9779
0.0016 20.8 520 0.1183 0.7312 0.6819 0.7881 0.9784
0.001 21.6 540 0.1187 0.7306 0.6850 0.7827 0.9784
0.0012 22.4 560 0.1227 0.7323 0.6752 0.8 0.9784
0.0011 23.2 580 0.1218 0.7212 0.6624 0.7914 0.9777
0.0012 24.0 600 0.1217 0.7243 0.6700 0.7881 0.9780
0.0006 24.8 620 0.1217 0.7296 0.6807 0.7859 0.9784
0.0006 25.6 640 0.1233 0.7272 0.6688 0.7968 0.9782
0.001 26.4 660 0.1206 0.7305 0.6807 0.7881 0.9787
0.0005 27.2 680 0.1207 0.7329 0.6842 0.7892 0.9786
0.0012 28.0 700 0.1211 0.7318 0.6822 0.7892 0.9786
0.0017 28.8 720 0.1225 0.7274 0.6706 0.7946 0.9784
0.001 29.6 740 0.1225 0.7274 0.6706 0.7946 0.9784

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
1
Safetensors
Model size
0.2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for prinsINT/deberta-v3-base-uner-down-synth400

Finetuned
(509)
this model