The Dataset Viewer has been disabled on this dataset.
🦥 Unsloth Training Scripts for HF Jobs
UV scripts for fine-tuning LLMs and VLMs using Unsloth on HF Jobs (on-demand cloud GPUs). UV handles dependency installation automatically, so you can run these scripts directly without any local setup.
Prerequisites
- A Hugging Face account with a token
- The HF CLI:
curl -LsSf https://hf.co/cli/install.sh | bash - A dataset on the Hub (see format requirements below)
Data Format
VLM Fine-tuning
Requires images and messages columns:
{
"images": [<PIL.Image>], # List of images
"messages": [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What's in this image?"}
]
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "A golden retriever playing fetch in a park."}
]
}
]
}
See davanstrien/iconclass-vlm-sft for a working dataset example, and davanstrien/iconclass-vlm-qwen3-best for a model trained with these scripts.
Continued Pretraining
Any dataset with a text column:
{"text": "Your domain-specific text here..."}
Use --text-column if your column has a different name.
Usage
View available options for any script:
uv run https://huggingface.co/datasets/uv-scripts/unsloth-jobs/raw/main/sft-qwen3-vl.py --help
VLM fine-tuning
hf jobs uv run \
https://huggingface.co/datasets/uv-scripts/unsloth-jobs/raw/main/sft-qwen3-vl.py \
--flavor a100-large --secrets HF_TOKEN --timeout 4h \
-- --dataset your-username/your-vlm-dataset \
--num-epochs 1 \
--eval-split 0.2 \
--output-repo your-username/my-vlm
Continued pretraining
hf jobs uv run \
https://huggingface.co/datasets/uv-scripts/unsloth-jobs/raw/main/continued-pretraining.py \
--flavor a100-large --secrets HF_TOKEN \
-- --dataset your-username/domain-corpus \
--text-column content \
--max-steps 1000 \
--output-repo your-username/domain-llm
With Trackio monitoring
hf jobs uv run \
https://huggingface.co/datasets/uv-scripts/unsloth-jobs/raw/main/sft-qwen3-vl.py \
--flavor a100-large --secrets HF_TOKEN \
-- --dataset your-username/dataset \
--trackio-space your-username/trackio \
--output-repo your-username/my-model
Scripts
| Script | Base Model | Task |
|---|---|---|
sft-qwen3-vl.py |
Qwen3-VL-8B | VLM fine-tuning |
sft-gemma3-vlm.py |
Gemma 3 4B | VLM fine-tuning (smaller) |
continued-pretraining.py |
Qwen3-0.6B | Domain adaptation |
Common Options
| Option | Description | Default |
|---|---|---|
--dataset |
HF dataset ID | required |
--output-repo |
Where to save trained model | required |
--max-steps |
Number of training steps | 500 |
--num-epochs |
Train for N epochs instead of steps | - |
--eval-split |
Fraction for evaluation (e.g., 0.2) | 0 (disabled) |
--batch-size |
Per-device batch size | 2 |
--gradient-accumulation |
Gradient accumulation steps | 4 |
--lora-r |
LoRA rank | 16 |
--learning-rate |
Learning rate | 2e-4 |
--merge-model |
Upload merged model (not just adapter) | false |
--trackio-space |
HF Space for live monitoring | - |
--run-name |
Custom name for Trackio run | auto |
Tips
- Use
--max-steps 10to verify everything works before a full run --eval-split 0.1helps detect overfitting- Run
hf jobs hardwareto see GPU pricing (A100-large ~$2.50/hr, L40S ~$1.80/hr) - Add
--streamingfor very large datasets - First training step may take a few minutes (CUDA kernel compilation)
Links
- Downloads last month
- 64