Dataset Viewer
Auto-converted to Parquet Duplicate
id
int64
1
219
file
stringlengths
8
30
original_program
stringlengths
387
8.63k
program_for_baseline
stringlengths
260
6.89k
baseline_decision
stringclasses
3 values
timings
listlengths
3
3
median_timing
float64
2.79
600
program_for_llm
stringlengths
151
6.79k
split
stringclasses
2 values
1
geo1-ll_unwindbound1_2.c
/* Geometric Series computes x=(z-1)* sum(z^k)[k=0..k-1] , y = z^k returns 1+x-y == 0 */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "geo1-ll.c", 9, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { int z, k; unsigned long long x, y, c; z = __VERIFIER_nondet_int(); k = __VERIFIER_nondet_int(); assume_abort_if_not(z >= 1); assume_abort_if_not(k >= 1); x = 1; y = z; c = 1; while (counter++ < 1) { if (!(c < k)) { break; } c = c + 1; x = x * z + 1; y = y * z; } // geo1 x = x * (z - 1); __VERIFIER_assert(1 + x - y == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { int z; int k; unsigned long long x; unsigned long long y; unsigned long long c; z = __VERIFIER_nondet_int(); k = __VERIFIER_nondet_int(); assume(z >= 1); assume(k >= 1); x = 1; y = z; c = 1; while ((counter++) < 1) { ; if (!(c < k)) { break; } c = c + 1; x = (x * z) + 1; y = y * z; } x = x * (z - 1); assert(((1 + x) - y) == 0); return 0; }
TRUE
[ 48.17556805704953, 50.44778047199361, 48.47588776197517 ]
48.475888
int counter = 0; int main() { int z; int k; unsigned long long x; unsigned long long y; unsigned long long c; z = (int) rand(); k = (int) rand(); assume(z >= 1); assume(k >= 1); x = 1; y = z; c = 1; while ((counter++) < 1) { INVARIANT_MARKER_1(); if (!(c < k)) { break; } c = c + 1; x = (x * z) + 1; y = y * z; } x = x * (z - 1); assert(((1 + x) - y) == 0); return 0; }
hard
2
prodbin-ll_unwindbound1_2.c
/* shift_add algorithm for computing the product of two natural numbers This task is incorrect, here is an explanation why: - The first assertion z + x * y == (long long) a * b is a loop invariant, so it can never be violated. */ extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "prodbin-ll.c", 14, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { int a, b; long long x, y, z; a = __VERIFIER_nondet_int(); b = __VERIFIER_nondet_int(); assume_abort_if_not(b >= 1); x = a; y = b; z = 0; while (counter++ < 1) { __VERIFIER_assert(z + x * y == (long long)a * b); if (!(y != 0)) { break; } if (y % 2 == 1) { z = z + x; y = y - 1; } x = 2 * x; y = y / 2; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { int a; int b; long long x; long long y; long long z; a = __VERIFIER_nondet_int(); b = __VERIFIER_nondet_int(); assume(b >= 1); x = a; y = b; z = 0; while ((counter++) < 1) { ; assert((z + (x * y)) == (((long long) a) * b)); if (!(y != 0)) { break; } if ((y % 2) == 1) { z = z + x; y = y - 1; } x = 2 * x; y = y / 2; } return 0; }
TRUE
[ 3.2313995250151493, 3.259587259963155, 3.1788803759845905 ]
3.2314
int counter = 0; int main() { int a; int b; long long x; long long y; long long z; a = (int) rand(); b = (int) rand(); assume(b >= 1); x = a; y = b; z = 0; while ((counter++) < 1) { INVARIANT_MARKER_1(); assert((z + (x * y)) == (((long long) a) * b)); if (!(y != 0)) { break; } if ((y % 2) == 1) { z = z + x; y = y - 1; } x = 2 * x; y = y / 2; } return 0; }
easy
3
egcd2-ll_valuebound50_2.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd2-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { int x, y; long long a, b, p, q, r, s, c, k, xy, yy; x = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 0 && x <= 50); y = __VERIFIER_nondet_int(); assume_abort_if_not(y >= 0 && y <= 50); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; c = 0; k = 0; xy = (long long)x * y; yy = (long long)y * y; assume_abort_if_not(xy < 2147483647); assume_abort_if_not(yy < 2147483647); while (1) { if (!(b != 0)) { break; } c = a; k = 0; while (1) { __VERIFIER_assert(a == y * r + x * p); if (!(c >= b)) { break; } c = c - b; k = k + 1; } a = b; b = c; long long temp; temp = p; p = q; q = temp - q * k; temp = r; r = s; s = temp - s * k; } return a; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; long long c; long long k; long long xy; long long yy; x = __VERIFIER_nondet_int(); assume((x >= 0) && (x <= 50)); y = __VERIFIER_nondet_int(); assume((y >= 0) && (y <= 50)); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; c = 0; k = 0; xy = ((long long) x) * y; yy = ((long long) y) * y; assume(xy < 2147483647); assume(yy < 2147483647); while (1) { ; if (!(b != 0)) { break; } c = a; k = 0; while (1) { ; assert(a == ((y * r) + (x * p))); if (!(c >= b)) { break; } c = c - b; k = k + 1; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } return a; }
TRUE
[ 205.71780442399904, 213.31883465097053, 212.52220862498507 ]
212.522209
int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; long long c; long long k; long long xy; long long yy; x = (int) rand(); assume((x >= 0) && (x <= 50)); y = (int) rand(); assume((y >= 0) && (y <= 50)); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; c = 0; k = 0; xy = ((long long) x) * y; yy = ((long long) y) * y; assume(xy < 2147483647); assume(yy < 2147483647); while (1) { INVARIANT_MARKER_1(); if (!(b != 0)) { break; } c = a; k = 0; while (1) { INVARIANT_MARKER_2(); assert(a == ((y * r) + (x * p))); if (!(c >= b)) { break; } c = c - b; k = k + 1; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } return a; }
hard
4
condmf_1.c
/* * Benchmarks contributed by Divyesh Unadkat[1,2], Supratik Chakraborty[1], Ashutosh Gupta[1] * [1] Indian Institute of Technology Bombay, Mumbai * [2] TCS Innovation labs, Pune * */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "condmf.c", 10, "reach_error"); } extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } extern int __VERIFIER_nondet_int(void); void *malloc(unsigned int size); int N; int main() { N = __VERIFIER_nondet_int(); if (N <= 0) { return 1; } assume_abort_if_not(N <= 2147483647 / sizeof(int)); int i; int *a = malloc(sizeof(int) * N); for (i = 0; i < N; i++) { a[i] = 0; } for (i = 0; i < N; i++) { if (N % 2 == 1) { a[i] = a[i] + 2; } else { a[i] = a[i] + 1; } } for (i = 0; i < N; i++) { __VERIFIER_assert(a[i] % 2 == N % 2); } return 1; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } void *malloc(unsigned int size); int N; int main() { N = __VERIFIER_nondet_int(); if (N <= 0) { return 1; } assume(N <= (2147483647 / (sizeof(int)))); int i; int *a = malloc((sizeof(int)) * N); for (i = 0; i < N; i++) { ; a[i] = 0; } for (i = 0; i < N; i++) { ; if ((N % 2) == 1) { a[i] = a[i] + 2; } else { a[i] = a[i] + 1; } } for (i = 0; i < N; i++) { ; assert((a[i] % 2) == (N % 2)); } return 1; }
FALSE
[ 3.40543018799508, 2.785573425993789, 2.762494330003392 ]
2.785573
void *malloc(unsigned int size); int N; int main() { N = (int) rand(); if (N <= 0) { return 1; } assume(N <= (2147483647 / (sizeof(int)))); int i; int *a = malloc((sizeof(int)) * N); for (i = 0; i < N; i++) { INVARIANT_MARKER_1(); a[i] = 0; } for (i = 0; i < N; i++) { INVARIANT_MARKER_2(); if ((N % 2) == 1) { a[i] = a[i] + 2; } else { a[i] = a[i] + 1; } } for (i = 0; i < N; i++) { INVARIANT_MARKER_3(); assert((a[i] % 2) == (N % 2)); } return 1; }
easy
5
cohencu-ll_valuebound100_9.c
/* Printing consecutive cubes, by Cohen http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohencu.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohencu-ll.c", 8, "reach_error"); } extern unsigned short __VERIFIER_nondet_ushort(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { short a; long long n, x, y, z; a = __VERIFIER_nondet_ushort(); assume_abort_if_not(a >= 0 && a <= 100); n = 0; x = 0; y = 1; z = 6; while (1) { if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } __VERIFIER_assert(2 * y * y - 3 * x * z - 18 * x - 10 * y + 3 * z - 10 == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { short a; long long n; long long x; long long y; long long z; a = __VERIFIER_nondet_ushort(); assume((a >= 0) && (a <= 100)); n = 0; x = 0; y = 1; z = 6; while (1) { ; if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert((((((((2 * y) * y) - ((3 * x) * z)) - (18 * x)) - (10 * y)) + (3 * z)) - 10) == 0); return 0; }
TRUE
[ 38.77385059703374, 38.25098747899756, 38.38460099202348 ]
38.384601
int main() { short a; long long n; long long x; long long y; long long z; a = (ushort) rand(); assume((a >= 0) && (a <= 100)); n = 0; x = 0; y = 1; z = 6; while (1) { INVARIANT_MARKER_1(); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert((((((((2 * y) * y) - ((3 * x) * z)) - (18 * x)) - (10 * y)) + (3 * z)) - 10) == 0); return 0; }
hard
6
cohencu-ll_valuebound1_2.c
/* Printing consecutive cubes, by Cohen http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohencu.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohencu-ll.c", 8, "reach_error"); } extern unsigned short __VERIFIER_nondet_ushort(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { short a; long long n, x, y, z; a = __VERIFIER_nondet_ushort(); assume_abort_if_not(a >= 0 && a <= 1); n = 0; x = 0; y = 1; z = 6; while (1) { __VERIFIER_assert(y == 3 * n * n + 3 * n + 1); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { short a; long long n; long long x; long long y; long long z; a = __VERIFIER_nondet_ushort(); assume((a >= 0) && (a <= 1)); n = 0; x = 0; y = 1; z = 6; while (1) { ; assert(y == ((((3 * n) * n) + (3 * n)) + 1)); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } return 0; }
TRUE
[ 3.180253451981116, 3.1502078589983284, 3.201172458997462 ]
3.180253
int main() { short a; long long n; long long x; long long y; long long z; a = (ushort) rand(); assume((a >= 0) && (a <= 1)); n = 0; x = 0; y = 1; z = 6; while (1) { INVARIANT_MARKER_1(); assert(y == ((((3 * n) * n) + (3 * n)) + 1)); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } return 0; }
easy
7
hard2_4.c
/* hardware integer division program, by Manna returns q==A//B */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "hard2.c", 8, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { int A, B; int r, d, p, q; A = __VERIFIER_nondet_int(); B = 1; r = A; d = B; p = 1; q = 0; while (1) { if (!(r >= d)) { break; } d = 2 * d; p = 2 * p; } while (1) { __VERIFIER_assert(A == q * B + r); if (!(p != 1)) { break; } d = d / 2; p = p / 2; if (r >= d) { r = r - d; q = q + p; } } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int A; int B; int r; int d; int p; int q; A = __VERIFIER_nondet_int(); B = 1; r = A; d = B; p = 1; q = 0; while (1) { ; if (!(r >= d)) { break; } d = 2 * d; p = 2 * p; } while (1) { ; assert(A == ((q * B) + r)); if (!(p != 1)) { break; } d = d / 2; p = p / 2; if (r >= d) { r = r - d; q = q + p; } } return 0; }
TIMEOUT
[ 600, 600, 600 ]
600
int main() { int A; int B; int r; int d; int p; int q; A = (int) rand(); B = 1; r = A; d = B; p = 1; q = 0; while (1) { INVARIANT_MARKER_1(); if (!(r >= d)) { break; } d = 2 * d; p = 2 * p; } while (1) { INVARIANT_MARKER_2(); assert(A == ((q * B) + r)); if (!(p != 1)) { break; } d = d / 2; p = p / 2; if (r >= d) { r = r - d; q = q + p; } } return 0; }
hard
8
freire2_unwindbound10_3.c
/* Algorithm for finding the closet integer to cubic root * more details, see : http://www.pedrofreire.com/sqrt/sqrt1.en.html Note: for some reason using cpa was able to disprove these cpa.sh -kInduction -setprop solver.solver=z3 freire2.c */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "freire2.c", 10, "reach_error"); } extern double __VERIFIER_nondet_double(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { int r; double a, x, s; a = __VERIFIER_nondet_double(); x = a; s = 3.25; r = 1; while (counter++ < 10) { __VERIFIER_assert((int)(8 * r * s - 24 * a + 16 * r - 12 * s + 24 * x - 3 == 0)); if (!(x - s > 0.0)) { break; } x = x - s; s = s + 6 * r + 3; r = r + 1; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { int r; double a; double x; double s; a = __VERIFIER_nondet_double(); x = a; s = 3.25; r = 1; while ((counter++) < 10) { ; assert((int) ((((((((8 * r) * s) - (24 * a)) + (16 * r)) - (12 * s)) + (24 * x)) - 3) == 0)); if (!((x - s) > 0.0)) { break; } x = x - s; s = (s + (6 * r)) + 3; r = r + 1; } return 0; }
FALSE
[ 24.767932577000465, 24.582481388002634, 24.637397395970766 ]
24.637397
int counter = 0; int main() { int r; double a; double x; double s; a = (double) rand(); x = a; s = 3.25; r = 1; while ((counter++) < 10) { INVARIANT_MARKER_1(); assert((int) ((((((((8 * r) * s) - (24 * a)) + (16 * r)) - (12 * s)) + (24 * x)) - 3) == 0)); if (!((x - s) > 0.0)) { break; } x = x - s; s = (s + (6 * r)) + 3; r = r + 1; } return 0; }
easy
9
fermat2-ll_unwindbound20_1.c
/* program computing a divisor for factorisation, by Bressoud */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "fermat2-ll.c", 5, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { int A, R; long long u, v, r; A = __VERIFIER_nondet_int(); R = __VERIFIER_nondet_int(); // assume_abort_if_not(A >= 1); assume_abort_if_not(((long long)R - 1) * ((long long)R - 1) < A); // assume_abort_if_not(A <= R * R); assume_abort_if_not(A % 2 == 1); u = ((long long)2 * R) + 1; v = 1; r = ((long long)R * R) - A; while (counter++ < 20) { __VERIFIER_assert(4 * (A + r) == u * u - v * v - 2 * u + 2 * v); if (!(r != 0)) { break; } if (r > 0) { r = r - v; v = v + 2; } else { r = r + u; u = u + 2; } } // return (u - v) / 2; return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { int A; int R; long long u; long long v; long long r; A = __VERIFIER_nondet_int(); R = __VERIFIER_nondet_int(); assume(((((long long) R) - 1) * (((long long) R) - 1)) < A); assume((A % 2) == 1); u = (((long long) 2) * R) + 1; v = 1; r = (((long long) R) * R) - A; while ((counter++) < 20) { ; assert((4 * (A + r)) == ((((u * u) - (v * v)) - (2 * u)) + (2 * v))); if (!(r != 0)) { break; } if (r > 0) { r = r - v; v = v + 2; } else { r = r + u; u = u + 2; } } return 0; }
TRUE
[ 5.692226686980575, 5.151226330024656, 5.11883603601018 ]
5.151226
int counter = 0; int main() { int A; int R; long long u; long long v; long long r; A = (int) rand(); R = (int) rand(); assume(((((long long) R) - 1) * (((long long) R) - 1)) < A); assume((A % 2) == 1); u = (((long long) 2) * R) + 1; v = 1; r = (((long long) R) * R) - A; while ((counter++) < 20) { INVARIANT_MARKER_1(); assert((4 * (A + r)) == ((((u * u) - (v * v)) - (2 * u)) + (2 * v))); if (!(r != 0)) { break; } if (r > 0) { r = r - v; v = v + 2; } else { r = r + u; u = u + 2; } } return 0; }
easy
10
egcd-ll_valuebound20_6.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { long long a, b, p, q, r, s; int x, y; x = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 0 && x <= 20); y = __VERIFIER_nondet_int(); assume_abort_if_not(y >= 0 && y <= 20); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } __VERIFIER_assert(q * r - p * s + 1 == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = __VERIFIER_nondet_int(); assume((x >= 0) && (x <= 20)); y = __VERIFIER_nondet_int(); assume((y >= 0) && (y <= 20)); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { ; if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } assert((((q * r) - (p * s)) + 1) == 0); return 0; }
TRUE
[ 3.8691455320222303, 3.930147686973214, 4.362941546016373 ]
3.930148
int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = (int) rand(); assume((x >= 0) && (x <= 20)); y = (int) rand(); assume((y >= 0) && (y <= 20)); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { INVARIANT_MARKER_1(); if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } assert((((q * r) - (p * s)) + 1) == 0); return 0; }
easy
11
cohencu-ll_valuebound20_11.c
/* Printing consecutive cubes, by Cohen http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohencu.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohencu-ll.c", 8, "reach_error"); } extern unsigned short __VERIFIER_nondet_ushort(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { short a; long long n, x, y, z; a = __VERIFIER_nondet_ushort(); assume_abort_if_not(a >= 0 && a <= 20); n = 0; x = 0; y = 1; z = 6; while (1) { if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } __VERIFIER_assert(y * z - 18 * x - 12 * y + 2 * z - 6 == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { short a; long long n; long long x; long long y; long long z; a = __VERIFIER_nondet_ushort(); assume((a >= 0) && (a <= 20)); n = 0; x = 0; y = 1; z = 6; while (1) { ; if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert((((((y * z) - (18 * x)) - (12 * y)) + (2 * z)) - 6) == 0); return 0; }
TRUE
[ 3.1433154880069196, 3.1813823750126176, 3.1256105730426498 ]
3.143315
int main() { short a; long long n; long long x; long long y; long long z; a = (ushort) rand(); assume((a >= 0) && (a <= 20)); n = 0; x = 0; y = 1; z = 6; while (1) { INVARIANT_MARKER_1(); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert((((((y * z) - (18 * x)) - (12 * y)) + (2 * z)) - 6) == 0); return 0; }
easy
12
ps5-ll_3.c
extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "ps5-ll.c", 3, "reach_error"); } extern short __VERIFIER_nondet_short(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { short k; long long y, x, c; k = __VERIFIER_nondet_short(); assume_abort_if_not(k <= 256); y = 0; x = 0; c = 0; while (1) { if (!(c < k)) { break; } c = c + 1; y = y + 1; x = y * y * y * y + x; } __VERIFIER_assert(k * y == y * y); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { short k; long long y; long long x; long long c; k = __VERIFIER_nondet_short(); assume(k <= 256); y = 0; x = 0; c = 0; while (1) { ; if (!(c < k)) { break; } c = c + 1; y = y + 1; x = (((y * y) * y) * y) + x; } assert((k * y) == (y * y)); return 0; }
TRUE
[ 3.7503540469915606, 4.055634371004999, 3.6828178760479204 ]
3.750354
int main() { short k; long long y; long long x; long long c; k = (short) rand(); assume(k <= 256); y = 0; x = 0; c = 0; while (1) { INVARIANT_MARKER_1(); if (!(c < k)) { break; } c = c + 1; y = y + 1; x = (((y * y) * y) * y) + x; } assert((k * y) == (y * y)); return 0; }
easy
13
egcd3-ll_unwindbound50_4.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd3-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { int x, y; long long a, b, p, q, r, s; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (counter++ < 50) { if (!(b != 0)) { break; } long long c, k; c = a; k = 0; while (counter++ < 50) { if (!(c >= b)) { break; } long long d, v; d = 1; v = b; while (counter++ < 50) { __VERIFIER_assert(v == b * d); if (!(c >= 2 * v)) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - q * k; temp = r; r = s; s = temp - s * k; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 50) { ; if (!(b != 0)) { break; } long long c; long long k; c = a; k = 0; while ((counter++) < 50) { ; if (!(c >= b)) { break; } long long d; long long v; d = 1; v = b; while ((counter++) < 50) { ; assert(v == (b * d)); if (!(c >= (2 * v))) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } return 0; }
TRUE
[ 4.02346919500269, 3.6014633600134403, 3.622331708029378 ]
3.622332
int counter = 0; int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; x = (int) rand(); y = (int) rand(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 50) { INVARIANT_MARKER_1(); if (!(b != 0)) { break; } long long c; long long k; c = a; k = 0; while ((counter++) < 50) { INVARIANT_MARKER_2(); if (!(c >= b)) { break; } long long d; long long v; d = 1; v = b; while ((counter++) < 50) { INVARIANT_MARKER_3(); assert(v == (b * d)); if (!(c >= (2 * v))) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } return 0; }
easy
14
hard2_valuebound1_4.c
/* hardware integer division program, by Manna returns q==A//B */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "hard2.c", 8, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { int A, B; int r, d, p, q; A = __VERIFIER_nondet_int(); assume_abort_if_not(A >= 0 && A <= 1); B = 1; r = A; d = B; p = 1; q = 0; while (1) { if (!(r >= d)) { break; } d = 2 * d; p = 2 * p; } while (1) { __VERIFIER_assert(A == q * B + r); if (!(p != 1)) { break; } d = d / 2; p = p / 2; if (r >= d) { r = r - d; q = q + p; } } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int A; int B; int r; int d; int p; int q; A = __VERIFIER_nondet_int(); assume((A >= 0) && (A <= 1)); B = 1; r = A; d = B; p = 1; q = 0; while (1) { ; if (!(r >= d)) { break; } d = 2 * d; p = 2 * p; } while (1) { ; assert(A == ((q * B) + r)); if (!(p != 1)) { break; } d = d / 2; p = p / 2; if (r >= d) { r = r - d; q = q + p; } } return 0; }
TRUE
[ 27.004339008999523, 23.888219040003605, 27.787746975955088 ]
27.004339
int main() { int A; int B; int r; int d; int p; int q; A = (int) rand(); assume((A >= 0) && (A <= 1)); B = 1; r = A; d = B; p = 1; q = 0; while (1) { INVARIANT_MARKER_1(); if (!(r >= d)) { break; } d = 2 * d; p = 2 * p; } while (1) { INVARIANT_MARKER_2(); assert(A == ((q * B) + r)); if (!(p != 1)) { break; } d = d / 2; p = p / 2; if (r >= d) { r = r - d; q = q + p; } } return 0; }
easy
15
mono-crafted_11_1.c
extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "mono-crafted_11.c", 3, "reach_error"); } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } int main() { unsigned int x = 0; while (x < 100000000) { if (x < 10000000) { x++; } else { x += 2; } } __VERIFIER_assert((x % 2) == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { unsigned int x = 0; while (x < 100000000) { ; if (x < 10000000) { x++; } else { x += 2; } } assert((x % 2) == 0); return 0; }
TRUE
[ 4.343507797049824, 4.090723657980561, 4.113108145014849 ]
4.113108
int main() { unsigned int x = 0; while (x < 100000000) { INVARIANT_MARKER_1(); if (x < 10000000) { x++; } else { x += 2; } } assert((x % 2) == 0); return 0; }
easy
16
ps4-ll_valuebound5_3.c
extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "ps4-ll.c", 3, "reach_error"); } extern short __VERIFIER_nondet_short(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { short k; long long y, x, c; k = __VERIFIER_nondet_short(); assume_abort_if_not(k >= 0 && k <= 5); y = 0; x = 0; c = 0; while (1) { if (!(c < k)) { break; } c = c + 1; y = y + 1; x = y * y * y + x; } __VERIFIER_assert(4 * x - y * y * y * y - 2 * y * y * y - y * y == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { short k; long long y; long long x; long long c; k = __VERIFIER_nondet_short(); assume((k >= 0) && (k <= 5)); y = 0; x = 0; c = 0; while (1) { ; if (!(c < k)) { break; } c = c + 1; y = y + 1; x = ((y * y) * y) + x; } assert(((((4 * x) - (((y * y) * y) * y)) - (((2 * y) * y) * y)) - (y * y)) == 0); return 0; }
TRUE
[ 3.66233108000597, 3.6324352740193717, 3.2370067900046706 ]
3.632435
int main() { short k; long long y; long long x; long long c; k = (short) rand(); assume((k >= 0) && (k <= 5)); y = 0; x = 0; c = 0; while (1) { INVARIANT_MARKER_1(); if (!(c < k)) { break; } c = c + 1; y = y + 1; x = ((y * y) * y) + x; } assert(((((4 * x) - (((y * y) * y) * y)) - (((2 * y) * y) * y)) - (y * y)) == 0); return 0; }
easy
17
cohencu-ll_valuebound20_7.c
/* Printing consecutive cubes, by Cohen http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohencu.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohencu-ll.c", 8, "reach_error"); } extern unsigned short __VERIFIER_nondet_ushort(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { short a; long long n, x, y, z; a = __VERIFIER_nondet_ushort(); assume_abort_if_not(a >= 0 && a <= 20); n = 0; x = 0; y = 1; z = 6; while (1) { if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } __VERIFIER_assert(6 * a * x - x * z + 12 * x == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { short a; long long n; long long x; long long y; long long z; a = __VERIFIER_nondet_ushort(); assume((a >= 0) && (a <= 20)); n = 0; x = 0; y = 1; z = 6; while (1) { ; if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert(((((6 * a) * x) - (x * z)) + (12 * x)) == 0); return 0; }
TRUE
[ 3.100354837020859, 3.1686688979971223, 3.6174876170116477 ]
3.168669
int main() { short a; long long n; long long x; long long y; long long z; a = (ushort) rand(); assume((a >= 0) && (a <= 20)); n = 0; x = 0; y = 1; z = 6; while (1) { INVARIANT_MARKER_1(); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert(((((6 * a) * x) - (x * z)) + (12 * x)) == 0); return 0; }
easy
18
cohencu-ll_valuebound50_8.c
/* Printing consecutive cubes, by Cohen http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohencu.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohencu-ll.c", 8, "reach_error"); } extern unsigned short __VERIFIER_nondet_ushort(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { short a; long long n, x, y, z; a = __VERIFIER_nondet_ushort(); assume_abort_if_not(a >= 0 && a <= 50); n = 0; x = 0; y = 1; z = 6; while (1) { if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } __VERIFIER_assert(a * z - 6 * a - 2 * y + 2 * z - 10 == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { short a; long long n; long long x; long long y; long long z; a = __VERIFIER_nondet_ushort(); assume((a >= 0) && (a <= 50)); n = 0; x = 0; y = 1; z = 6; while (1) { ; if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert((((((a * z) - (6 * a)) - (2 * y)) + (2 * z)) - 10) == 0); return 0; }
TRUE
[ 5.388494809973054, 5.263128796999808, 5.369712587969843 ]
5.369713
int main() { short a; long long n; long long x; long long y; long long z; a = (ushort) rand(); assume((a >= 0) && (a <= 50)); n = 0; x = 0; y = 1; z = 6; while (1) { INVARIANT_MARKER_1(); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert((((((a * z) - (6 * a)) - (2 * y)) + (2 * z)) - 10) == 0); return 0; }
easy
19
egcd-ll_valuebound5_5.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { long long a, b, p, q, r, s; int x, y; x = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 0 && x <= 5); y = __VERIFIER_nondet_int(); assume_abort_if_not(y >= 0 && y <= 5); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } __VERIFIER_assert(p * x + r * y - b == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = __VERIFIER_nondet_int(); assume((x >= 0) && (x <= 5)); y = __VERIFIER_nondet_int(); assume((y >= 0) && (y <= 5)); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { ; if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } assert((((p * x) + (r * y)) - b) == 0); return 0; }
TRUE
[ 12.870408152986784, 13.199893784010783, 13.444726904970594 ]
13.199894
int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = (int) rand(); assume((x >= 0) && (x <= 5)); y = (int) rand(); assume((y >= 0) && (y <= 5)); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { INVARIANT_MARKER_1(); if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } assert((((p * x) + (r * y)) - b) == 0); return 0; }
easy
20
egcd-ll_valuebound100_5.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { long long a, b, p, q, r, s; int x, y; x = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 0 && x <= 100); y = __VERIFIER_nondet_int(); assume_abort_if_not(y >= 0 && y <= 100); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { __VERIFIER_assert(((((1 <= y && x <= 100) && 1 <= x) && s * y + q * x + 2 * a == b + 2 * (p * x) + r * y * 2)&& r * y + p * x == a) && y <= 100); if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } __VERIFIER_assert(p * x + r * y - b == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = __VERIFIER_nondet_int(); assume((x >= 0) && (x <= 100)); y = __VERIFIER_nondet_int(); assume((y >= 0) && (y <= 100)); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { ; assert((((((1 <= y) && (x <= 100)) && (1 <= x)) && ((((s * y) + (q * x)) + (2 * a)) == ((b + (2 * (p * x))) + ((r * y) * 2)))) && (((r * y) + (p * x)) == a)) && (y <= 100)); if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } assert((((p * x) + (r * y)) - b) == 0); return 0; }
TRUE
[ 8.977821929962374, 8.593483573000412, 16.94829440698959 ]
8.977822
int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = (int) rand(); assume((x >= 0) && (x <= 100)); y = (int) rand(); assume((y >= 0) && (y <= 100)); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { INVARIANT_MARKER_1(); assert((((((1 <= y) && (x <= 100)) && (1 <= x)) && ((((s * y) + (q * x)) + (2 * a)) == ((b + (2 * (p * x))) + ((r * y) * 2)))) && (((r * y) + (p * x)) == a)) && (y <= 100)); if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } assert((((p * x) + (r * y)) - b) == 0); return 0; }
easy
21
prod4br-ll_valuebound10_1.c
/* algorithm for computing the product of two natural numbers */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "prod4br-ll.c", 5, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { int x, y; long long a, b, p, q; x = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 0 && x <= 10); y = __VERIFIER_nondet_int(); assume_abort_if_not(y >= 0 && y <= 10); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; while (1) { __VERIFIER_assert(q + a * b * p == (long long)x * y); if (!(a != 0 && b != 0)) { break; } if (a % 2 == 0 && b % 2 == 0) { a = a / 2; b = b / 2; p = 4 * p; } else if (a % 2 == 1 && b % 2 == 0) { a = a - 1; q = q + b * p; } else if (a % 2 == 0 && b % 2 == 1) { b = b - 1; q = q + a * p; } else { a = a - 1; b = b - 1; q = q + (a + b + 1) * p; /*fix a bug here--- was (a+b-1)*/ } } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int x; int y; long long a; long long b; long long p; long long q; x = __VERIFIER_nondet_int(); assume((x >= 0) && (x <= 10)); y = __VERIFIER_nondet_int(); assume((y >= 0) && (y <= 10)); assume(y >= 1); a = x; b = y; p = 1; q = 0; while (1) { ; assert((q + ((a * b) * p)) == (((long long) x) * y)); if (!((a != 0) && (b != 0))) { break; } if (((a % 2) == 0) && ((b % 2) == 0)) { a = a / 2; b = b / 2; p = 4 * p; } else if (((a % 2) == 1) && ((b % 2) == 0)) { a = a - 1; q = q + (b * p); } else if (((a % 2) == 0) && ((b % 2) == 1)) { b = b - 1; q = q + (a * p); } else { a = a - 1; b = b - 1; q = q + (((a + b) + 1) * p); } } return 0; }
TRUE
[ 3.453790681960527, 3.32533072901424, 3.2845041360124014 ]
3.325331
int main() { int x; int y; long long a; long long b; long long p; long long q; x = (int) rand(); assume((x >= 0) && (x <= 10)); y = (int) rand(); assume((y >= 0) && (y <= 10)); assume(y >= 1); a = x; b = y; p = 1; q = 0; while (1) { INVARIANT_MARKER_1(); assert((q + ((a * b) * p)) == (((long long) x) * y)); if (!((a != 0) && (b != 0))) { break; } if (((a % 2) == 0) && ((b % 2) == 0)) { a = a / 2; b = b / 2; p = 4 * p; } else if (((a % 2) == 1) && ((b % 2) == 0)) { a = a - 1; q = q + (b * p); } else if (((a % 2) == 0) && ((b % 2) == 1)) { b = b - 1; q = q + (a * p); } else { a = a - 1; b = b - 1; q = q + (((a + b) + 1) * p); } } return 0; }
easy
22
hard-ll_valuebound1_6.c
/* hardware integer division program, by Manna returns q==A//B */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "hard-ll.c", 8, "reach_error"); } extern unsigned int __VERIFIER_nondet_uint(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { unsigned int A, B; long long r, d, p, q; A = __VERIFIER_nondet_uint(); assume_abort_if_not(A >= 0 && A <= 1); B = __VERIFIER_nondet_uint(); assume_abort_if_not(B >= 0 && B <= 1); assume_abort_if_not(B >= 1); r = A; d = B; p = 1; q = 0; while (1) { if (!(r >= d)) { break; } d = 2 * d; p = 2 * p; } while (1) { if (!(p != 1)) { break; } d = d / 2; p = p / 2; if (r >= d) { r = r - d; q = q + p; } } __VERIFIER_assert(A == d * q + r); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { unsigned int A; unsigned int B; long long r; long long d; long long p; long long q; A = __VERIFIER_nondet_uint(); assume((A >= 0) && (A <= 1)); B = __VERIFIER_nondet_uint(); assume((B >= 0) && (B <= 1)); assume(B >= 1); r = A; d = B; p = 1; q = 0; while (1) { ; if (!(r >= d)) { break; } d = 2 * d; p = 2 * p; } while (1) { ; if (!(p != 1)) { break; } d = d / 2; p = p / 2; if (r >= d) { r = r - d; q = q + p; } } assert(A == ((d * q) + r)); return 0; }
TRUE
[ 4.475212654040661, 4.947320236009546, 4.46484591497574 ]
4.475213
int main() { unsigned int A; unsigned int B; long long r; long long d; long long p; long long q; A = (unsigned int) rand(); assume((A >= 0) && (A <= 1)); B = (unsigned int) rand(); assume((B >= 0) && (B <= 1)); assume(B >= 1); r = A; d = B; p = 1; q = 0; while (1) { INVARIANT_MARKER_1(); if (!(r >= d)) { break; } d = 2 * d; p = 2 * p; } while (1) { INVARIANT_MARKER_2(); if (!(p != 1)) { break; } d = d / 2; p = p / 2; if (r >= d) { r = r - d; q = q + p; } } assert(A == ((d * q) + r)); return 0; }
easy
23
benchmark24_conjunctive_1.c
#include <assert.h> void reach_error(void) { assert(0); } extern int __VERIFIER_nondet_int(void); extern _Bool __VERIFIER_nondet_bool(void); void __VERIFIER_assert(int cond) { if (!cond) { reach_error(); } } /* 24.cfg: names=i k n beforeloop= beforeloopinit= precondition=i==0 && k==n && n>=0 loopcondition=i<n loop=k--; i+=2; postcondition=2*k>=n-1 afterloop= learners= conj */ int main() { int i = __VERIFIER_nondet_int(); int k = __VERIFIER_nondet_int(); int n = __VERIFIER_nondet_int(); if (!(i == 0 && k == n && n >= 0)) { return 0; } while (i < n) { k--; i += 2; } __VERIFIER_assert(2 * k >= n - 1); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int i = __VERIFIER_nondet_int(); int k = __VERIFIER_nondet_int(); int n = __VERIFIER_nondet_int(); if (!(((i == 0) && (k == n)) && (n >= 0))) { return 0; } while (i < n) { ; k--; i += 2; } assert((2 * k) >= (n - 1)); return 0; }
TRUE
[ 3.2040367769659497, 3.5920763299800456, 3.367471067002043 ]
3.367471
int main() { int i = (int) rand(); int k = (int) rand(); int n = (int) rand(); if (!(((i == 0) && (k == n)) && (n >= 0))) { return 0; } while (i < n) { INVARIANT_MARKER_1(); k--; i += 2; } assert((2 * k) >= (n - 1)); return 0; }
easy
24
rewnifrev2_1.c
extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "rewnifrev2.c", 3, "reach_error"); } extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } extern int __VERIFIER_nondet_int(void); void *malloc(unsigned int size); int SIZE; const int MAX = 100000; int main() { SIZE = __VERIFIER_nondet_int(); int i; if (SIZE > 1 && SIZE < MAX) { int *a = malloc(sizeof(int) * SIZE); for (i = SIZE - 2; i >= 0; i--) { a[i] = i; a[i + 1] = i + 1; } for (i = 0; i < SIZE; i++) { __VERIFIER_assert(a[i] >= i); } } return 1; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } void *malloc(unsigned int size); int SIZE; const int MAX = 100000; int main() { SIZE = __VERIFIER_nondet_int(); int i; if ((SIZE > 1) && (SIZE < MAX)) { int *a = malloc((sizeof(int)) * SIZE); for (i = SIZE - 2; i >= 0; i--) { ; a[i] = i; a[i + 1] = i + 1; } for (i = 0; i < SIZE; i++) { ; assert(a[i] >= i); } } return 1; }
TIMEOUT
[ 600, 600, 600 ]
600
void *malloc(unsigned int size); int SIZE; const int MAX = 100000; int main() { SIZE = (int) rand(); int i; if ((SIZE > 1) && (SIZE < MAX)) { int *a = malloc((sizeof(int)) * SIZE); for (i = SIZE - 2; i >= 0; i--) { INVARIANT_MARKER_1(); a[i] = i; a[i + 1] = i + 1; } for (i = 0; i < SIZE; i++) { INVARIANT_MARKER_2(); assert(a[i] >= i); } } return 1; }
hard
25
cohencu-ll_valuebound2_5.c
/* Printing consecutive cubes, by Cohen http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohencu.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohencu-ll.c", 8, "reach_error"); } extern unsigned short __VERIFIER_nondet_ushort(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { short a; long long n, x, y, z; a = __VERIFIER_nondet_ushort(); assume_abort_if_not(a >= 0 && a <= 2); n = 0; x = 0; y = 1; z = 6; while (1) { __VERIFIER_assert((z * z) - 12 * y - 6 * z + 12 == 0); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { short a; long long n; long long x; long long y; long long z; a = __VERIFIER_nondet_ushort(); assume((a >= 0) && (a <= 2)); n = 0; x = 0; y = 1; z = 6; while (1) { ; assert(((((z * z) - (12 * y)) - (6 * z)) + 12) == 0); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } return 0; }
TRUE
[ 4.180961174017284, 3.634843739971984, 3.5852220809902065 ]
3.634844
int main() { short a; long long n; long long x; long long y; long long z; a = (ushort) rand(); assume((a >= 0) && (a <= 2)); n = 0; x = 0; y = 1; z = 6; while (1) { INVARIANT_MARKER_1(); assert(((((z * z) - (12 * y)) - (6 * z)) + 12) == 0); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } return 0; }
easy
26
cohencu-ll_unwindbound20_7.c
/* Printing consecutive cubes, by Cohen http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohencu.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohencu-ll.c", 8, "reach_error"); } extern unsigned short __VERIFIER_nondet_ushort(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { short a; long long n, x, y, z; a = __VERIFIER_nondet_ushort(); n = 0; x = 0; y = 1; z = 6; while (counter++ < 20) { if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } __VERIFIER_assert(6 * a * x - x * z + 12 * x == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { short a; long long n; long long x; long long y; long long z; a = __VERIFIER_nondet_ushort(); n = 0; x = 0; y = 1; z = 6; while ((counter++) < 20) { ; if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert(((((6 * a) * x) - (x * z)) + (12 * x)) == 0); return 0; }
FALSE
[ 5.065433937008493, 5.382770735013764, 5.42932222399395 ]
5.382771
int counter = 0; int main() { short a; long long n; long long x; long long y; long long z; a = (ushort) rand(); n = 0; x = 0; y = 1; z = 6; while ((counter++) < 20) { INVARIANT_MARKER_1(); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert(((((6 * a) * x) - (x * z)) + (12 * x)) == 0); return 0; }
easy
27
lcm1_unwindbound2_5.c
/* * algorithm for computing simultaneously the GCD and the LCM, * by Sankaranarayanan */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "lcm1.c", 8, "reach_error"); } extern unsigned __VERIFIER_nondet_uint(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { unsigned a, b; unsigned x, y, u, v; a = __VERIFIER_nondet_uint(); b = __VERIFIER_nondet_uint(); assume_abort_if_not(a >= 1); // infinite loop if remove assume_abort_if_not(b >= 1); assume_abort_if_not(a <= 65535); assume_abort_if_not(b <= 65535); x = a; y = b; u = b; v = 0; while (counter++ < 2) { if (!(x != y)) { break; } while (counter++ < 2) { if (!(x > y)) { break; } x = x - y; v = v + u; } while (counter++ < 2) { if (!(x < y)) { break; } y = y - x; u = u + v; } } __VERIFIER_assert(x == y); // x == gcd(a,b) // u + v == lcm(a,b) return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { unsigned a; unsigned b; unsigned x; unsigned y; unsigned u; unsigned v; a = __VERIFIER_nondet_uint(); b = __VERIFIER_nondet_uint(); assume(a >= 1); assume(b >= 1); assume(a <= 65535); assume(b <= 65535); x = a; y = b; u = b; v = 0; while ((counter++) < 2) { ; if (!(x != y)) { break; } while ((counter++) < 2) { ; if (!(x > y)) { break; } x = x - y; v = v + u; } while ((counter++) < 2) { ; if (!(x < y)) { break; } y = y - x; u = u + v; } } assert(x == y); return 0; }
FALSE
[ 3.6806939609814435, 3.6056270109838806, 3.1305154570145532 ]
3.605627
int counter = 0; int main() { unsigned a; unsigned b; unsigned x; unsigned y; unsigned u; unsigned v; a = (unsigned int) rand(); b = (unsigned int) rand(); assume(a >= 1); assume(b >= 1); assume(a <= 65535); assume(b <= 65535); x = a; y = b; u = b; v = 0; while ((counter++) < 2) { INVARIANT_MARKER_1(); if (!(x != y)) { break; } while ((counter++) < 2) { INVARIANT_MARKER_2(); if (!(x > y)) { break; } x = x - y; v = v + u; } while ((counter++) < 2) { INVARIANT_MARKER_3(); if (!(x < y)) { break; } y = y - x; u = u + v; } } assert(x == y); return 0; }
easy
28
ps4-ll_2.c
extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "ps4-ll.c", 3, "reach_error"); } extern short __VERIFIER_nondet_short(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { short k; long long y, x, c; k = __VERIFIER_nondet_short(); y = 0; x = 0; c = 0; while (1) { if (!(c < k)) { break; } c = c + 1; y = y + 1; x = y * y * y + x; } __VERIFIER_assert(k * y - (y * y) == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { short k; long long y; long long x; long long c; k = __VERIFIER_nondet_short(); y = 0; x = 0; c = 0; while (1) { ; if (!(c < k)) { break; } c = c + 1; y = y + 1; x = ((y * y) * y) + x; } assert(((k * y) - (y * y)) == 0); return 0; }
TRUE
[ 4.269199436996132, 3.8527221160475165, 4.282192612008657 ]
4.269199
int main() { short k; long long y; long long x; long long c; k = (short) rand(); y = 0; x = 0; c = 0; while (1) { INVARIANT_MARKER_1(); if (!(c < k)) { break; } c = c + 1; y = y + 1; x = ((y * y) * y) + x; } assert(((k * y) - (y * y)) == 0); return 0; }
easy
29
num_conversion_1_1.c
// This file is part of the SV-Benchmarks collection of verification tasks: // https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks // // SPDX-FileCopyrightText: 2012-2021 The SV-Benchmarks Community // SPDX-FileCopyrightText: 2012 FBK-ES <https://es.fbk.eu/> // // SPDX-License-Identifier: Apache-2.0 extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "num_conversion_1.c", 3, "reach_error"); } extern int __VERIFIER_nondet_int(void); void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } return; } // #include <assert.h> int main() { unsigned char x; unsigned char y; unsigned char c; x = 37; y = 0; c = 0; while (c < (unsigned char)8) { unsigned char i = ((unsigned char)1) << c; unsigned char bit = x & i; if (bit != (unsigned char)0) { y = y + i; } c = c + ((unsigned char)1); } __VERIFIER_assert(x == y); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { unsigned char x; unsigned char y; unsigned char c; x = 37; y = 0; c = 0; while (c < ((unsigned char) 8)) { ; unsigned char i = ((unsigned char) 1) << c; unsigned char bit = x & i; if (bit != ((unsigned char) 0)) { y = y + i; } c = c + ((unsigned char) 1); } assert(x == y); return 0; }
TRUE
[ 15.69061186799081, 17.10984572599409, 15.594676886044908 ]
15.690612
int main() { unsigned char x; unsigned char y; unsigned char c; x = 37; y = 0; c = 0; while (c < ((unsigned char) 8)) { INVARIANT_MARKER_1(); unsigned char i = ((unsigned char) 1) << c; unsigned char bit = x & i; if (bit != ((unsigned char) 0)) { y = y + i; } c = c + ((unsigned char) 1); } assert(x == y); return 0; }
easy
30
sum_by_3_1.c
extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "sum_by_3.c", 3, "reach_error"); } extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } return; } int SIZE = 20000001; unsigned int __VERIFIER_nondet_uint(); int main() { unsigned int n, i, k; n = __VERIFIER_nondet_uint(); if (!(n <= SIZE)) { return 0; } i = 0; while (i < n) { i = i + 1; } int j = i; while (j < n) { j = j + 1; } k = j; while (k < n) { k = k + 1; } __VERIFIER_assert((i + j + k) / 3 <= SIZE); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int SIZE = 20000001; unsigned int __VERIFIER_nondet_uint(); int main() { unsigned int n; unsigned int i; unsigned int k; n = __VERIFIER_nondet_uint(); if (!(n <= SIZE)) { return 0; } i = 0; while (i < n) { ; i = i + 1; } int j = i; while (j < n) { ; j = j + 1; } k = j; while (k < n) { ; k = k + 1; } assert((((i + j) + k) / 3) <= SIZE); return 0; }
TRUE
[ 98.85375956998905, 105.97380227502435, 104.68053347698878 ]
104.680533
int SIZE = 20000001; unsigned int (unsigned int) rand(); int main() { unsigned int n; unsigned int i; unsigned int k; n = (unsigned int) rand(); if (!(n <= SIZE)) { return 0; } i = 0; while (i < n) { INVARIANT_MARKER_1(); i = i + 1; } int j = i; while (j < n) { INVARIANT_MARKER_2(); j = j + 1; } k = j; while (k < n) { INVARIANT_MARKER_3(); k = k + 1; } assert((((i + j) + k) / 3) <= SIZE); return 0; }
hard
31
cohencu-ll_unwindbound5_2.c
/* Printing consecutive cubes, by Cohen http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohencu.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohencu-ll.c", 8, "reach_error"); } extern unsigned short __VERIFIER_nondet_ushort(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { short a; long long n, x, y, z; a = __VERIFIER_nondet_ushort(); n = 0; x = 0; y = 1; z = 6; while (counter++ < 5) { __VERIFIER_assert(y == 3 * n * n + 3 * n + 1); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { short a; long long n; long long x; long long y; long long z; a = __VERIFIER_nondet_ushort(); n = 0; x = 0; y = 1; z = 6; while ((counter++) < 5) { ; assert(y == ((((3 * n) * n) + (3 * n)) + 1)); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } return 0; }
TRUE
[ 3.6655099889612757, 3.8042458170093596, 3.6501546429935843 ]
3.66551
int counter = 0; int main() { short a; long long n; long long x; long long y; long long z; a = (ushort) rand(); n = 0; x = 0; y = 1; z = 6; while ((counter++) < 5) { INVARIANT_MARKER_1(); assert(y == ((((3 * n) * n) + (3 * n)) + 1)); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } return 0; }
easy
32
bh2017-ex-add_2.c
// Source: Rémy Boutonnet, Nicolas Halbwachs: "Improving the results of program analysis by abstract interpretation beyond the decreasing sequence", FMSD 2017. // Example "additional". #include <assert.h> extern void abort(void); void reach_error() { assert(0); } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } extern _Bool __VERIFIER_nondet_bool(); int main() { int m = 0; int n = 0; while (1) { __VERIFIER_assert(n <= 60); if (__VERIFIER_nondet_bool()) { if (__VERIFIER_nondet_bool()) { if (m < 60) { m++; } else { m = 0; } } } if (__VERIFIER_nondet_bool()) { if (__VERIFIER_nondet_bool()) { if (n < 60) { n++; } else { n = 0; } } } } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int m = 0; int n = 0; while (1) { ; assert(n <= 60); if (__VERIFIER_nondet_bool()) { if (__VERIFIER_nondet_bool()) { if (m < 60) { m++; } else { m = 0; } } } if (__VERIFIER_nondet_bool()) { if (__VERIFIER_nondet_bool()) { if (n < 60) { n++; } else { n = 0; } } } } return 0; }
TRUE
[ 3.0365190490265377, 3.4901496420498006, 3.45362672599731 ]
3.453627
int main() { int m = 0; int n = 0; while (1) { INVARIANT_MARKER_1(); assert(n <= 60); if ((bool) rand()) { if ((bool) rand()) { if (m < 60) { m++; } else { m = 0; } } } if ((bool) rand()) { if ((bool) rand()) { if (n < 60) { n++; } else { n = 0; } } } } return 0; }
easy
33
egcd-ll_unwindbound10_3.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { long long a, b, p, q, r, s; int x, y; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (counter++ < 10) { __VERIFIER_assert(b == x * q + y * s); if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 10) { ; assert(b == ((x * q) + (y * s))); if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } return 0; }
TRUE
[ 3.9043275520089082, 3.9921503649675287, 3.978751240996644 ]
3.978751
int counter = 0; int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = (int) rand(); y = (int) rand(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 10) { INVARIANT_MARKER_1(); assert(b == ((x * q) + (y * s))); if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } return 0; }
easy
34
geo1-ll_valuebound2_1.c
/* Geometric Series computes x=(z-1)* sum(z^k)[k=0..k-1] , y = z^k returns 1+x-y == 0 */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "geo1-ll.c", 9, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { int z, k; long long x, y, c; z = __VERIFIER_nondet_int(); assume_abort_if_not(z >= 0 && z <= 2); k = __VERIFIER_nondet_int(); assume_abort_if_not(k >= 0 && k <= 2); assume_abort_if_not(z >= 1); assume_abort_if_not(k >= 1); x = 1; y = z; c = 1; while (1) { __VERIFIER_assert(x * z - x - y + 1 == 0); if (!(c < k)) { break; } c = c + 1; x = x * z + 1; y = y * z; } // geo1 x = x * (z - 1); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int z; int k; long long x; long long y; long long c; z = __VERIFIER_nondet_int(); assume((z >= 0) && (z <= 2)); k = __VERIFIER_nondet_int(); assume((k >= 0) && (k <= 2)); assume(z >= 1); assume(k >= 1); x = 1; y = z; c = 1; while (1) { ; assert(((((x * z) - x) - y) + 1) == 0); if (!(c < k)) { break; } c = c + 1; x = (x * z) + 1; y = y * z; } x = x * (z - 1); return 0; }
TRUE
[ 4.394543864997104, 4.309014783997554, 3.847944103006739 ]
4.309015
int main() { int z; int k; long long x; long long y; long long c; z = (int) rand(); assume((z >= 0) && (z <= 2)); k = (int) rand(); assume((k >= 0) && (k <= 2)); assume(z >= 1); assume(k >= 1); x = 1; y = z; c = 1; while (1) { INVARIANT_MARKER_1(); assert(((((x * z) - x) - y) + 1) == 0); if (!(c < k)) { break; } c = c + 1; x = (x * z) + 1; y = y * z; } x = x * (z - 1); return 0; }
easy
35
cohencu_1.c
/* Printing consecutive cubes, by Cohen http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohencu.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohencu.c", 8, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { int a, n, x, y, z; a = __VERIFIER_nondet_int(); n = 0; x = 0; y = 1; z = 6; while (1) { __VERIFIER_assert(z == 6 * n + 6); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int a; int n; int x; int y; int z; a = __VERIFIER_nondet_int(); n = 0; x = 0; y = 1; z = 6; while (1) { ; assert(z == ((6 * n) + 6)); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } return 0; }
TRUE
[ 3.3589168359758332, 2.902650393953081, 3.3233061360078864 ]
3.323306
int main() { int a; int n; int x; int y; int z; a = (int) rand(); n = 0; x = 0; y = 1; z = 6; while (1) { INVARIANT_MARKER_1(); assert(z == ((6 * n) + 6)); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } return 0; }
easy
36
egcd-ll_unwindbound50_3.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { long long a, b, p, q, r, s; int x, y; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (counter++ < 50) { __VERIFIER_assert(b == x * q + y * s); if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 50) { ; assert(b == ((x * q) + (y * s))); if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } return 0; }
TRUE
[ 3.8525240960298106, 3.8935068720020354, 4.106843271991238 ]
3.893507
int counter = 0; int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = (int) rand(); y = (int) rand(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 50) { INVARIANT_MARKER_1(); assert(b == ((x * q) + (y * s))); if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } return 0; }
easy
37
rewnifrev_1.c
extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "rewnifrev.c", 3, "reach_error"); } extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } extern int __VERIFIER_nondet_int(void); void *malloc(unsigned int size); int SIZE; const int MAX = 100000; int main() { SIZE = __VERIFIER_nondet_int(); if (SIZE > 1 && SIZE < MAX) { int i; int *a = malloc(sizeof(int) * SIZE); for (i = SIZE - 1; i >= 0; i--) { if ((i - 1) >= 0) { a[i - 1] = i - 2; } a[i] = i; } for (i = 0; i < SIZE; i++) { __VERIFIER_assert(a[i] >= i); } } return 1; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } void *malloc(unsigned int size); int SIZE; const int MAX = 100000; int main() { SIZE = __VERIFIER_nondet_int(); if ((SIZE > 1) && (SIZE < MAX)) { int i; int *a = malloc((sizeof(int)) * SIZE); for (i = SIZE - 1; i >= 0; i--) { ; if ((i - 1) >= 0) { a[i - 1] = i - 2; } a[i] = i; } for (i = 0; i < SIZE; i++) { ; assert(a[i] >= i); } } return 1; }
TIMEOUT
[ 600, 600, 600 ]
600
void *malloc(unsigned int size); int SIZE; const int MAX = 100000; int main() { SIZE = (int) rand(); if ((SIZE > 1) && (SIZE < MAX)) { int i; int *a = malloc((sizeof(int)) * SIZE); for (i = SIZE - 1; i >= 0; i--) { INVARIANT_MARKER_1(); if ((i - 1) >= 0) { a[i - 1] = i - 2; } a[i] = i; } for (i = 0; i < SIZE; i++) { INVARIANT_MARKER_2(); assert(a[i] >= i); } } return 1; }
hard
38
hard2_valuebound10_5.c
/* hardware integer division program, by Manna returns q==A//B */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "hard2.c", 8, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { int A, B; int r, d, p, q; A = __VERIFIER_nondet_int(); assume_abort_if_not(A >= 0 && A <= 10); B = 1; r = A; d = B; p = 1; q = 0; while (1) { if (!(r >= d)) { break; } d = 2 * d; p = 2 * p; } while (1) { __VERIFIER_assert(d == B * p); if (!(p != 1)) { break; } d = d / 2; p = p / 2; if (r >= d) { r = r - d; q = q + p; } } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int A; int B; int r; int d; int p; int q; A = __VERIFIER_nondet_int(); assume((A >= 0) && (A <= 10)); B = 1; r = A; d = B; p = 1; q = 0; while (1) { ; if (!(r >= d)) { break; } d = 2 * d; p = 2 * p; } while (1) { ; assert(d == (B * p)); if (!(p != 1)) { break; } d = d / 2; p = p / 2; if (r >= d) { r = r - d; q = q + p; } } return 0; }
TRUE
[ 45.1108198009897, 44.509495894017164, 43.57572907599388 ]
44.509496
int main() { int A; int B; int r; int d; int p; int q; A = (int) rand(); assume((A >= 0) && (A <= 10)); B = 1; r = A; d = B; p = 1; q = 0; while (1) { INVARIANT_MARKER_1(); if (!(r >= d)) { break; } d = 2 * d; p = 2 * p; } while (1) { INVARIANT_MARKER_2(); assert(d == (B * p)); if (!(p != 1)) { break; } d = d / 2; p = p / 2; if (r >= d) { r = r - d; q = q + p; } } return 0; }
hard
39
egcd-ll_unwindbound10_5.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { long long a, b, p, q, r, s; int x, y; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (counter++ < 10) { if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } __VERIFIER_assert(p * x + r * y - b == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 10) { ; if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } assert((((p * x) + (r * y)) - b) == 0); return 0; }
FALSE
[ 14.082223333010916, 14.574602227017749, 14.908257484028582 ]
14.574602
int counter = 0; int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = (int) rand(); y = (int) rand(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 10) { INVARIANT_MARKER_1(); if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } assert((((p * x) + (r * y)) - b) == 0); return 0; }
easy
40
divbin2_valuebound1_2.c
/* A division algorithm, by Kaldewaij returns A//B */ #include <limits.h> extern void abort(void); #include <assert.h> void reach_error() { assert(0); } extern unsigned __VERIFIER_nondet_uint(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { unsigned A, B; unsigned q, r, b; A = __VERIFIER_nondet_uint(); assume_abort_if_not(A >= 0 && A <= 1); B = 1; q = 0; r = A; b = B; while (1) { if (!(r >= b)) { break; } b = 2 * b; } while (1) { if (!(b != B)) { break; } q = 2 * q; b = b / 2; if (r >= b) { q = q + 1; r = r - b; } } __VERIFIER_assert(A == q * b + r); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { unsigned A; unsigned B; unsigned q; unsigned r; unsigned b; A = __VERIFIER_nondet_uint(); assume((A >= 0) && (A <= 1)); B = 1; q = 0; r = A; b = B; while (1) { ; if (!(r >= b)) { break; } b = 2 * b; } while (1) { ; if (!(b != B)) { break; } q = 2 * q; b = b / 2; if (r >= b) { q = q + 1; r = r - b; } } assert(A == ((q * b) + r)); return 0; }
TRUE
[ 6.358308510039933, 6.316791600023862, 6.054061484988779 ]
6.316792
int main() { unsigned A; unsigned B; unsigned q; unsigned r; unsigned b; A = (unsigned int) rand(); assume((A >= 0) && (A <= 1)); B = 1; q = 0; r = A; b = B; while (1) { INVARIANT_MARKER_1(); if (!(r >= b)) { break; } b = 2 * b; } while (1) { INVARIANT_MARKER_2(); if (!(b != B)) { break; } q = 2 * q; b = b / 2; if (r >= b) { q = q + 1; r = r - b; } } assert(A == ((q * b) + r)); return 0; }
easy
41
egcd3-ll_valuebound2_5.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd3-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { int x, y; long long a, b, p, q, r, s; x = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 0 && x <= 2); y = __VERIFIER_nondet_int(); assume_abort_if_not(y >= 0 && y <= 2); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { if (!(b != 0)) { break; } long long c, k; c = a; k = 0; while (1) { if (!(c >= b)) { break; } long long d, v; d = 1; v = b; while (1) { if (!(c >= 2 * v)) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - q * k; temp = r; r = s; s = temp - s * k; } __VERIFIER_assert(p * x - q * x + r * y - s * y == a); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; x = __VERIFIER_nondet_int(); assume((x >= 0) && (x <= 2)); y = __VERIFIER_nondet_int(); assume((y >= 0) && (y <= 2)); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { ; if (!(b != 0)) { break; } long long c; long long k; c = a; k = 0; while (1) { ; if (!(c >= b)) { break; } long long d; long long v; d = 1; v = b; while (1) { ; if (!(c >= (2 * v))) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } assert(((((p * x) - (q * x)) + (r * y)) - (s * y)) == a); return 0; }
TRUE
[ 29.790918100974523, 28.95391258399468, 29.677485001971945 ]
29.677485
int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; x = (int) rand(); assume((x >= 0) && (x <= 2)); y = (int) rand(); assume((y >= 0) && (y <= 2)); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { INVARIANT_MARKER_1(); if (!(b != 0)) { break; } long long c; long long k; c = a; k = 0; while (1) { INVARIANT_MARKER_2(); if (!(c >= b)) { break; } long long d; long long v; d = 1; v = b; while (1) { INVARIANT_MARKER_3(); if (!(c >= (2 * v))) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } assert(((((p * x) - (q * x)) + (r * y)) - (s * y)) == a); return 0; }
easy
42
cohencu-ll_valuebound10_10.c
/* Printing consecutive cubes, by Cohen http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohencu.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohencu-ll.c", 8, "reach_error"); } extern unsigned short __VERIFIER_nondet_ushort(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { short a; long long n, x, y, z; a = __VERIFIER_nondet_ushort(); assume_abort_if_not(a >= 0 && a <= 10); n = 0; x = 0; y = 1; z = 6; while (1) { if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } __VERIFIER_assert(z * z - 12 * y - 6 * z + 12 == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { short a; long long n; long long x; long long y; long long z; a = __VERIFIER_nondet_ushort(); assume((a >= 0) && (a <= 10)); n = 0; x = 0; y = 1; z = 6; while (1) { ; if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert(((((z * z) - (12 * y)) - (6 * z)) + 12) == 0); return 0; }
TRUE
[ 5.217184454028029, 5.1592390519799665, 5.537847539992072 ]
5.217184
int main() { short a; long long n; long long x; long long y; long long z; a = (ushort) rand(); assume((a >= 0) && (a <= 10)); n = 0; x = 0; y = 1; z = 6; while (1) { INVARIANT_MARKER_1(); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert(((((z * z) - (12 * y)) - (6 * z)) + 12) == 0); return 0; }
easy
43
egcd-ll_unwindbound5_5.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { long long a, b, p, q, r, s; int x, y; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (counter++ < 5) { if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } __VERIFIER_assert(p * x + r * y - b == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 5) { ; if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } assert((((p * x) + (r * y)) - b) == 0); return 0; }
FALSE
[ 10.525907565024681, 10.634770117001608, 10.445417592010926 ]
10.525908
int counter = 0; int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = (int) rand(); y = (int) rand(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 5) { INVARIANT_MARKER_1(); if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } assert((((p * x) + (r * y)) - b) == 0); return 0; }
easy
44
cohencu-ll_valuebound100_8.c
/* Printing consecutive cubes, by Cohen http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohencu.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohencu-ll.c", 8, "reach_error"); } extern unsigned short __VERIFIER_nondet_ushort(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { short a; long long n, x, y, z; a = __VERIFIER_nondet_ushort(); assume_abort_if_not(a >= 0 && a <= 100); n = 0; x = 0; y = 1; z = 6; while (1) { if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } __VERIFIER_assert(a * z - 6 * a - 2 * y + 2 * z - 10 == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { short a; long long n; long long x; long long y; long long z; a = __VERIFIER_nondet_ushort(); assume((a >= 0) && (a <= 100)); n = 0; x = 0; y = 1; z = 6; while (1) { ; if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert((((((a * z) - (6 * a)) - (2 * y)) + (2 * z)) - 10) == 0); return 0; }
TRUE
[ 8.873458713002037, 8.32761333102826, 8.599731385009363 ]
8.599731
int main() { short a; long long n; long long x; long long y; long long z; a = (ushort) rand(); assume((a >= 0) && (a <= 100)); n = 0; x = 0; y = 1; z = 6; while (1) { INVARIANT_MARKER_1(); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert((((((a * z) - (6 * a)) - (2 * y)) + (2 * z)) - 10) == 0); return 0; }
easy
45
dll-rb-cnstr_1-2_4.c
extern void abort(void); #include <assert.h> void reach_error() { assert(0); } typedef enum { RED, BLACK } Colour; typedef struct TSLL { struct TSLL *next; struct TSLL *prev; Colour colour; } SLL; int main() { // create the head SLL *list = malloc(sizeof(SLL)); list->next = NULL; list->prev = NULL; list->colour = BLACK; SLL *end = list; // create an arbitrarily long tail while (__VERIFIER_nondet_int()) { // create a node end->next = malloc(sizeof(SLL)); end->next->prev = end; end = end->next; end->next = NULL; if (__VERIFIER_nondet_int()) { // mark the node as black end->colour = BLACK; } else { // mark the node as red and follow it by a black node end->colour = RED; end->next = malloc(sizeof(SLL)); end->next->prev = end; end = end->next; end->next = NULL; end->colour = BLACK; } } end = NULL; end = list; // check the invariant while (NULL != end) { if (RED == end->colour) { end = end->next; end = end->next; } __VERIFIER_assert(end->next); end = end->next; } // destroy the list while (NULL != list) { if (RED == list->colour) { // we can remove two nodes at once end = list->next; free(list); list = end->next; free(end); } else { // we can remove only one node end = list->next; free(list); list = end; } } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } typedef enum { RED, BLACK } Colour; typedef struct TSLL { struct TSLL *next; struct TSLL *prev; Colour colour; } SLL; int main() { SLL *list = malloc(sizeof(SLL)); list->next = NULL; list->prev = NULL; list->colour = BLACK; SLL *end = list; while (__VERIFIER_nondet_int()) { ; end->next = malloc(sizeof(SLL)); end->next->prev = end; end = end->next; end->next = NULL; if (__VERIFIER_nondet_int()) { end->colour = BLACK; } else { end->colour = RED; end->next = malloc(sizeof(SLL)); end->next->prev = end; end = end->next; end->next = NULL; end->colour = BLACK; } } end = NULL; end = list; while (NULL != end) { ; if (RED == end->colour) { end = end->next; end = end->next; } assert(end->next); end = end->next; } while (NULL != list) { ; if (RED == list->colour) { end = list->next; free(list); list = end->next; free(end); } else { end = list->next; free(list); list = end; } } return 0; }
FALSE
[ 5.335370855988003, 4.607098093023524, 4.645075494016055 ]
4.645075
typedef enum { RED, BLACK } Colour; typedef struct TSLL { struct TSLL *next; struct TSLL *prev; Colour colour; } SLL; int main() { SLL *list = malloc(sizeof(SLL)); list->next = NULL; list->prev = NULL; list->colour = BLACK; SLL *end = list; while ((int) rand()) { INVARIANT_MARKER_1(); end->next = malloc(sizeof(SLL)); end->next->prev = end; end = end->next; end->next = NULL; if ((int) rand()) { end->colour = BLACK; } else { end->colour = RED; end->next = malloc(sizeof(SLL)); end->next->prev = end; end = end->next; end->next = NULL; end->colour = BLACK; } } end = NULL; end = list; while (NULL != end) { INVARIANT_MARKER_2(); if (RED == end->colour) { end = end->next; end = end->next; } assert(end->next); end = end->next; } while (NULL != list) { INVARIANT_MARKER_3(); if (RED == list->colour) { end = list->next; free(list); list = end->next; free(end); } else { end = list->next; free(list); list = end; } } return 0; }
easy
46
ps4-ll_valuebound5_1.c
extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "ps4-ll.c", 3, "reach_error"); } extern short __VERIFIER_nondet_short(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { short k; long long y, x, c; k = __VERIFIER_nondet_short(); assume_abort_if_not(k >= 0 && k <= 5); y = 0; x = 0; c = 0; while (1) { __VERIFIER_assert(4 * x - y * y * y * y - 2 * y * y * y - y * y == 0); if (!(c < k)) { break; } c = c + 1; y = y + 1; x = y * y * y + x; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { short k; long long y; long long x; long long c; k = __VERIFIER_nondet_short(); assume((k >= 0) && (k <= 5)); y = 0; x = 0; c = 0; while (1) { ; assert(((((4 * x) - (((y * y) * y) * y)) - (((2 * y) * y) * y)) - (y * y)) == 0); if (!(c < k)) { break; } c = c + 1; y = y + 1; x = ((y * y) * y) + x; } return 0; }
TRUE
[ 5.332450041023549, 5.322034009965137, 5.481144185992889 ]
5.33245
int main() { short k; long long y; long long x; long long c; k = (short) rand(); assume((k >= 0) && (k <= 5)); y = 0; x = 0; c = 0; while (1) { INVARIANT_MARKER_1(); assert(((((4 * x) - (((y * y) * y) * y)) - (((2 * y) * y) * y)) - (y * y)) == 0); if (!(c < k)) { break; } c = c + 1; y = y + 1; x = ((y * y) * y) + x; } return 0; }
easy
47
sqrt1_2.c
/* Compute the floor of the square root of a natural number */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "sqrt1.c", 5, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { int n, a, s, t; n = __VERIFIER_nondet_int(); a = 0; s = 1; t = 1; while (1) { __VERIFIER_assert(s == (a + 1) * (a + 1)); // the above 2 should be equiv to if (!(s <= n)) { break; } a = a + 1; t = t + 2; s = s + t; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int n; int a; int s; int t; n = __VERIFIER_nondet_int(); a = 0; s = 1; t = 1; while (1) { ; assert(s == ((a + 1) * (a + 1))); if (!(s <= n)) { break; } a = a + 1; t = t + 2; s = s + t; } return 0; }
TRUE
[ 5.192616373999044, 4.9505335439462215, 5.30947021197062 ]
5.192616
int main() { int n; int a; int s; int t; n = (int) rand(); a = 0; s = 1; t = 1; while (1) { INVARIANT_MARKER_1(); assert(s == ((a + 1) * (a + 1))); if (!(s <= n)) { break; } a = a + 1; t = t + 2; s = s + t; } return 0; }
easy
48
egcd3-ll_unwindbound10_5.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd3-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { int x, y; long long a, b, p, q, r, s; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (counter++ < 10) { if (!(b != 0)) { break; } long long c, k; c = a; k = 0; while (counter++ < 10) { if (!(c >= b)) { break; } long long d, v; d = 1; v = b; while (counter++ < 10) { if (!(c >= 2 * v)) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - q * k; temp = r; r = s; s = temp - s * k; } __VERIFIER_assert(p * x - q * x + r * y - s * y == a); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 10) { ; if (!(b != 0)) { break; } long long c; long long k; c = a; k = 0; while ((counter++) < 10) { ; if (!(c >= b)) { break; } long long d; long long v; d = 1; v = b; while ((counter++) < 10) { ; if (!(c >= (2 * v))) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } assert(((((p * x) - (q * x)) + (r * y)) - (s * y)) == a); return 0; }
FALSE
[ 38.36512292904081, 38.25699684099527, 38.478115651989356 ]
38.365123
int counter = 0; int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; x = (int) rand(); y = (int) rand(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 10) { INVARIANT_MARKER_1(); if (!(b != 0)) { break; } long long c; long long k; c = a; k = 0; while ((counter++) < 10) { INVARIANT_MARKER_2(); if (!(c >= b)) { break; } long long d; long long v; d = 1; v = b; while ((counter++) < 10) { INVARIANT_MARKER_3(); if (!(c >= (2 * v))) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } assert(((((p * x) - (q * x)) + (r * y)) - (s * y)) == a); return 0; }
hard
49
modnf_1.c
/* * Benchmarks contributed by Divyesh Unadkat[1,2], Supratik Chakraborty[1], Ashutosh Gupta[1] * [1] Indian Institute of Technology Bombay, Mumbai * [2] TCS Innovation labs, Pune * */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "modnf.c", 10, "reach_error"); } extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } extern int __VERIFIER_nondet_int(void); void *malloc(unsigned int size); int N; int main() { N = __VERIFIER_nondet_int(); if (N <= 0) { return 1; } assume_abort_if_not(N <= 2147483647 / sizeof(int)); int i; int sum[1]; int *a = malloc(sizeof(int) * N); sum[0] = 0; for (i = 0; i < N; i++) { sum[0] = sum[0] + 1; } for (i = 0; i < N; i++) { a[i] = sum[0] % N; } for (i = 0; i < N; i++) { __VERIFIER_assert(a[i] == 1); } return 1; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } void *malloc(unsigned int size); int N; int main() { N = __VERIFIER_nondet_int(); if (N <= 0) { return 1; } assume(N <= (2147483647 / (sizeof(int)))); int i; int sum[1]; int *a = malloc((sizeof(int)) * N); sum[0] = 0; for (i = 0; i < N; i++) { ; sum[0] = sum[0] + 1; } for (i = 0; i < N; i++) { ; a[i] = sum[0] % N; } for (i = 0; i < N; i++) { ; assert(a[i] == 1); } return 1; }
FALSE
[ 4.927954914979637, 4.675865898025222, 4.994441560993437 ]
4.927955
void *malloc(unsigned int size); int N; int main() { N = (int) rand(); if (N <= 0) { return 1; } assume(N <= (2147483647 / (sizeof(int)))); int i; int sum[1]; int *a = malloc((sizeof(int)) * N); sum[0] = 0; for (i = 0; i < N; i++) { INVARIANT_MARKER_1(); sum[0] = sum[0] + 1; } for (i = 0; i < N; i++) { INVARIANT_MARKER_2(); a[i] = sum[0] % N; } for (i = 0; i < N; i++) { INVARIANT_MARKER_3(); assert(a[i] == 1); } return 1; }
easy
50
cohencu-ll_unwindbound2_8.c
/* Printing consecutive cubes, by Cohen http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohencu.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohencu-ll.c", 8, "reach_error"); } extern unsigned short __VERIFIER_nondet_ushort(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { short a; long long n, x, y, z; a = __VERIFIER_nondet_ushort(); n = 0; x = 0; y = 1; z = 6; while (counter++ < 2) { if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } __VERIFIER_assert(a * z - 6 * a - 2 * y + 2 * z - 10 == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { short a; long long n; long long x; long long y; long long z; a = __VERIFIER_nondet_ushort(); n = 0; x = 0; y = 1; z = 6; while ((counter++) < 2) { ; if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert((((((a * z) - (6 * a)) - (2 * y)) + (2 * z)) - 10) == 0); return 0; }
FALSE
[ 5.6473826200235635, 6.1227695340057835, 5.456660235009622 ]
5.647383
int counter = 0; int main() { short a; long long n; long long x; long long y; long long z; a = (ushort) rand(); n = 0; x = 0; y = 1; z = 6; while ((counter++) < 2) { INVARIANT_MARKER_1(); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert((((((a * z) - (6 * a)) - (2 * y)) + (2 * z)) - 10) == 0); return 0; }
easy
51
hard-u_valuebound1_4.c
/* hardware integer division program, by Manna returns q==A//B */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "hard-u.c", 8, "reach_error"); } extern unsigned int __VERIFIER_nondet_uint(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { unsigned int A, B; unsigned int r, d, p, q; A = __VERIFIER_nondet_uint(); assume_abort_if_not(A >= 0 && A <= 1); B = __VERIFIER_nondet_uint(); assume_abort_if_not(B >= 0 && B <= 1); assume_abort_if_not(B >= 1); r = A; d = B; p = 1; q = 0; while (1) { if (!(r >= d)) { break; } d = 2 * d; p = 2 * p; } while (1) { __VERIFIER_assert(A == q * B + r); if (!(p != 1)) { break; } d = d / 2; p = p / 2; if (r >= d) { r = r - d; q = q + p; } } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { unsigned int A; unsigned int B; unsigned int r; unsigned int d; unsigned int p; unsigned int q; A = __VERIFIER_nondet_uint(); assume((A >= 0) && (A <= 1)); B = __VERIFIER_nondet_uint(); assume((B >= 0) && (B <= 1)); assume(B >= 1); r = A; d = B; p = 1; q = 0; while (1) { ; if (!(r >= d)) { break; } d = 2 * d; p = 2 * p; } while (1) { ; assert(A == ((q * B) + r)); if (!(p != 1)) { break; } d = d / 2; p = p / 2; if (r >= d) { r = r - d; q = q + p; } } return 0; }
TRUE
[ 143.96894136897754, 46.93078572599916, 163.2082892319886 ]
143.968941
int main() { unsigned int A; unsigned int B; unsigned int r; unsigned int d; unsigned int p; unsigned int q; A = (unsigned int) rand(); assume((A >= 0) && (A <= 1)); B = (unsigned int) rand(); assume((B >= 0) && (B <= 1)); assume(B >= 1); r = A; d = B; p = 1; q = 0; while (1) { INVARIANT_MARKER_1(); if (!(r >= d)) { break; } d = 2 * d; p = 2 * p; } while (1) { INVARIANT_MARKER_2(); assert(A == ((q * B) + r)); if (!(p != 1)) { break; } d = d / 2; p = p / 2; if (r >= d) { r = r - d; q = q + p; } } return 0; }
hard
52
sll-buckets-2_3.c
extern void abort(void); #include <assert.h> void reach_error() { assert(0); } typedef struct TSLL { struct TSLL *next; int data; } SLL; typedef struct TBCK { struct TBCK *next; SLL *list; int data; } BCK; int main() { // create the head BCK *bucket = malloc(sizeof(BCK)); bucket->data = 0; bucket->list = NULL; bucket->next = malloc(sizeof(BCK)); BCK *bcki = bucket->next; bcki->data = 1; bcki->list = NULL; bcki->next = malloc(sizeof(BCK)); bcki = bcki->next; bcki->data = 2; bcki->list = NULL; bcki->next = NULL; struct TSLL *item = NULL; struct TSLL *itr = NULL; while (__VERIFIER_nondet_int()) { item = malloc(sizeof(SLL)); item->next = NULL; if (__VERIFIER_nondet_int()) { item->data = 0; } else if (__VERIFIER_nondet_int()) { item->data = 1; } else { item->data = 2; } bcki = bucket; __VERIFIER_assert(item != NULL); while (bcki->data != item->data) { bcki = bcki->next; } if (bcki->list == NULL) { bcki->list = item; } else { itr = bcki->list; while (itr->next != NULL) { itr = itr->next; } itr->next = item; } } bcki = bucket; while (bcki != NULL) { item = bcki->list; bcki->list = NULL; while (item != NULL) { itr = item; item = item->next; free(itr); } bucket = bcki; bcki = bcki->next; free(bucket); bucket = NULL; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } typedef struct TSLL { struct TSLL *next; int data; } SLL; typedef struct TBCK { struct TBCK *next; SLL *list; int data; } BCK; int main() { BCK *bucket = malloc(sizeof(BCK)); bucket->data = 0; bucket->list = NULL; bucket->next = malloc(sizeof(BCK)); BCK *bcki = bucket->next; bcki->data = 1; bcki->list = NULL; bcki->next = malloc(sizeof(BCK)); bcki = bcki->next; bcki->data = 2; bcki->list = NULL; bcki->next = NULL; struct TSLL *item = NULL; struct TSLL *itr = NULL; while (__VERIFIER_nondet_int()) { ; item = malloc(sizeof(SLL)); item->next = NULL; if (__VERIFIER_nondet_int()) { item->data = 0; } else if (__VERIFIER_nondet_int()) { item->data = 1; } else { item->data = 2; } bcki = bucket; assert(item != NULL); while (bcki->data != item->data) { ; bcki = bcki->next; } if (bcki->list == NULL) { bcki->list = item; } else { itr = bcki->list; while (itr->next != NULL) { ; itr = itr->next; } itr->next = item; } } bcki = bucket; while (bcki != NULL) { ; item = bcki->list; bcki->list = NULL; while (item != NULL) { ; itr = item; item = item->next; free(itr); } bucket = bcki; bcki = bcki->next; free(bucket); bucket = NULL; } return 0; }
TRUE
[ 4.944600378978066, 4.648448046005797, 5.108914162032306 ]
4.9446
typedef struct TSLL { struct TSLL *next; int data; } SLL; typedef struct TBCK { struct TBCK *next; SLL *list; int data; } BCK; int main() { BCK *bucket = malloc(sizeof(BCK)); bucket->data = 0; bucket->list = NULL; bucket->next = malloc(sizeof(BCK)); BCK *bcki = bucket->next; bcki->data = 1; bcki->list = NULL; bcki->next = malloc(sizeof(BCK)); bcki = bcki->next; bcki->data = 2; bcki->list = NULL; bcki->next = NULL; struct TSLL *item = NULL; struct TSLL *itr = NULL; while ((int) rand()) { INVARIANT_MARKER_1(); item = malloc(sizeof(SLL)); item->next = NULL; if ((int) rand()) { item->data = 0; } else if ((int) rand()) { item->data = 1; } else { item->data = 2; } bcki = bucket; assert(item != NULL); while (bcki->data != item->data) { INVARIANT_MARKER_2(); bcki = bcki->next; } if (bcki->list == NULL) { bcki->list = item; } else { itr = bcki->list; while (itr->next != NULL) { INVARIANT_MARKER_3(); itr = itr->next; } itr->next = item; } } bcki = bucket; while (bcki != NULL) { INVARIANT_MARKER_4(); item = bcki->list; bcki->list = NULL; while (item != NULL) { INVARIANT_MARKER_5(); itr = item; item = item->next; free(itr); } bucket = bcki; bcki = bcki->next; free(bucket); bucket = NULL; } return 0; }
easy
53
diamond_1-1_1.c
extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "diamond_1-1.c", 3, "reach_error"); } extern unsigned int __VERIFIER_nondet_uint(void); void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } return; } int main(void) { unsigned int x = 0; unsigned int y = __VERIFIER_nondet_uint(); while (x < 99) { if (y % 2 == 0) { x += 2; } else { x++; } } __VERIFIER_assert((x % 2) == (y % 2)); }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main(void) { unsigned int x = 0; unsigned int y = __VERIFIER_nondet_uint(); while (x < 99) { ; if ((y % 2) == 0) { x += 2; } else { x++; } } assert((x % 2) == (y % 2)); }
TRUE
[ 15.095539961999748, 15.216394267976284, 15.502282989036757 ]
15.216394
int main(void) { unsigned int x = 0; unsigned int y = (unsigned int) rand(); while (x < 99) { INVARIANT_MARKER_1(); if ((y % 2) == 0) { x += 2; } else { x++; } } assert((x % 2) == (y % 2)); }
easy
54
sqrt1-ll_valuebound50_5.c
/* Compute the floor of the square root of a natural number */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "sqrt1-ll.c", 5, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { int n; long long a, s, t; n = __VERIFIER_nondet_int(); assume_abort_if_not(n >= 0 && n <= 50); a = 0; s = 1; t = 1; while (1) { // the above 2 should be equiv to if (!(s <= n)) { break; } a = a + 1; t = t + 2; s = s + t; } __VERIFIER_assert(s == (a + 1) * (a + 1)); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int n; long long a; long long s; long long t; n = __VERIFIER_nondet_int(); assume((n >= 0) && (n <= 50)); a = 0; s = 1; t = 1; while (1) { ; if (!(s <= n)) { break; } a = a + 1; t = t + 2; s = s + t; } assert(s == ((a + 1) * (a + 1))); return 0; }
TRUE
[ 4.936381197010633, 5.234459706989583, 4.746365169994533 ]
4.936381
int main() { int n; long long a; long long s; long long t; n = (int) rand(); assume((n >= 0) && (n <= 50)); a = 0; s = 1; t = 1; while (1) { INVARIANT_MARKER_1(); if (!(s <= n)) { break; } a = a + 1; t = t + 2; s = s + t; } assert(s == ((a + 1) * (a + 1))); return 0; }
easy
55
freire2_valuebound10_6.c
/* Algorithm for finding the closet integer to cubic root * more details, see : http://www.pedrofreire.com/sqrt/sqrt1.en.html Note: for some reason using cpa was able to disprove these cpa.sh -kInduction -setprop solver.solver=z3 freire2.c */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "freire2.c", 10, "reach_error"); } extern double __VERIFIER_nondet_double(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { int r; double a, x, s; a = __VERIFIER_nondet_double(); assume_abort_if_not(a >= 0 && a <= 10); x = a; s = 3.25; r = 1; while (1) { if (!(x - s > 0.0)) { break; } x = x - s; s = s + 6 * r + 3; r = r + 1; } __VERIFIER_assert((int)(8 * r * s - 24 * a + 16 * r - 12 * s + 24 * x - 3 == 0)); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int r; double a; double x; double s; a = __VERIFIER_nondet_double(); assume((a >= 0) && (a <= 10)); x = a; s = 3.25; r = 1; while (1) { ; if (!((x - s) > 0.0)) { break; } x = x - s; s = (s + (6 * r)) + 3; r = r + 1; } assert((int) ((((((((8 * r) * s) - (24 * a)) + (16 * r)) - (12 * s)) + (24 * x)) - 3) == 0)); return 0; }
FALSE
[ 21.45497120602522, 22.766893885971513, 21.677408478979487 ]
21.677408
int main() { int r; double a; double x; double s; a = (double) rand(); assume((a >= 0) && (a <= 10)); x = a; s = 3.25; r = 1; while (1) { INVARIANT_MARKER_1(); if (!((x - s) > 0.0)) { break; } x = x - s; s = (s + (6 * r)) + 3; r = r + 1; } assert((int) ((((((((8 * r) * s) - (24 * a)) + (16 * r)) - (12 * s)) + (24 * x)) - 3) == 0)); return 0; }
easy
56
cohendiv-ll_unwindbound10_5.c
/* Cohen's integer division returns x % y http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohendiv.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohendiv-ll.c", 8, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { int x, y; long long q, r, a, b; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume_abort_if_not(y >= 1); q = 0; r = x; a = 0; b = 0; while (counter++ < 10) { if (!(r >= y)) { break; } a = 1; b = y; while (counter++ < 10) { __VERIFIER_assert(r >= 0); if (!(r >= 2 * b)) { break; } a = 2 * a; b = 2 * b; } r = r - b; q = q + a; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { int x; int y; long long q; long long r; long long a; long long b; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume(y >= 1); q = 0; r = x; a = 0; b = 0; while ((counter++) < 10) { ; if (!(r >= y)) { break; } a = 1; b = y; while ((counter++) < 10) { ; assert(r >= 0); if (!(r >= (2 * b))) { break; } a = 2 * a; b = 2 * b; } r = r - b; q = q + a; } return 0; }
TRUE
[ 4.875113187008537, 4.623701954027638, 4.936187904968392 ]
4.875113
int counter = 0; int main() { int x; int y; long long q; long long r; long long a; long long b; x = (int) rand(); y = (int) rand(); assume(y >= 1); q = 0; r = x; a = 0; b = 0; while ((counter++) < 10) { INVARIANT_MARKER_1(); if (!(r >= y)) { break; } a = 1; b = y; while ((counter++) < 10) { INVARIANT_MARKER_2(); assert(r >= 0); if (!(r >= (2 * b))) { break; } a = 2 * a; b = 2 * b; } r = r - b; q = q + a; } return 0; }
easy
57
ps4-ll_valuebound20_2.c
extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "ps4-ll.c", 3, "reach_error"); } extern short __VERIFIER_nondet_short(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { short k; long long y, x, c; k = __VERIFIER_nondet_short(); assume_abort_if_not(k >= 0 && k <= 20); y = 0; x = 0; c = 0; while (1) { if (!(c < k)) { break; } c = c + 1; y = y + 1; x = y * y * y + x; } __VERIFIER_assert(k * y - (y * y) == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { short k; long long y; long long x; long long c; k = __VERIFIER_nondet_short(); assume((k >= 0) && (k <= 20)); y = 0; x = 0; c = 0; while (1) { ; if (!(c < k)) { break; } c = c + 1; y = y + 1; x = ((y * y) * y) + x; } assert(((k * y) - (y * y)) == 0); return 0; }
TRUE
[ 5.652972889016382, 5.894824556016829, 5.343581151973922 ]
5.652973
int main() { short k; long long y; long long x; long long c; k = (short) rand(); assume((k >= 0) && (k <= 20)); y = 0; x = 0; c = 0; while (1) { INVARIANT_MARKER_1(); if (!(c < k)) { break; } c = c + 1; y = y + 1; x = ((y * y) * y) + x; } assert(((k * y) - (y * y)) == 0); return 0; }
easy
58
egcd3-ll_valuebound1_5.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd3-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { int x, y; long long a, b, p, q, r, s; x = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 0 && x <= 1); y = __VERIFIER_nondet_int(); assume_abort_if_not(y >= 0 && y <= 1); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { if (!(b != 0)) { break; } long long c, k; c = a; k = 0; while (1) { if (!(c >= b)) { break; } long long d, v; d = 1; v = b; while (1) { if (!(c >= 2 * v)) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - q * k; temp = r; r = s; s = temp - s * k; } __VERIFIER_assert(p * x - q * x + r * y - s * y == a); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; x = __VERIFIER_nondet_int(); assume((x >= 0) && (x <= 1)); y = __VERIFIER_nondet_int(); assume((y >= 0) && (y <= 1)); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { ; if (!(b != 0)) { break; } long long c; long long k; c = a; k = 0; while (1) { ; if (!(c >= b)) { break; } long long d; long long v; d = 1; v = b; while (1) { ; if (!(c >= (2 * v))) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } assert(((((p * x) - (q * x)) + (r * y)) - (s * y)) == a); return 0; }
TRUE
[ 10.097280160000082, 9.855425876041409, 10.002822408976499 ]
10.002822
int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; x = (int) rand(); assume((x >= 0) && (x <= 1)); y = (int) rand(); assume((y >= 0) && (y <= 1)); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { INVARIANT_MARKER_1(); if (!(b != 0)) { break; } long long c; long long k; c = a; k = 0; while (1) { INVARIANT_MARKER_2(); if (!(c >= b)) { break; } long long d; long long v; d = 1; v = b; while (1) { INVARIANT_MARKER_3(); if (!(c >= (2 * v))) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } assert(((((p * x) - (q * x)) + (r * y)) - (s * y)) == a); return 0; }
easy
59
egcd3-ll_unwindbound10_1.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd3-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { int x, y; long long a, b, p, q, r, s; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (counter++ < 10) { if (!(b != 0)) { break; } long long c, k; c = a; k = 0; while (counter++ < 10) { if (!(c >= b)) { break; } long long d, v; d = 1; v = b; while (counter++ < 10) { __VERIFIER_assert(a == y * r + x * p); if (!(c >= 2 * v)) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - q * k; temp = r; r = s; s = temp - s * k; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 10) { ; if (!(b != 0)) { break; } long long c; long long k; c = a; k = 0; while ((counter++) < 10) { ; if (!(c >= b)) { break; } long long d; long long v; d = 1; v = b; while ((counter++) < 10) { ; assert(a == ((y * r) + (x * p))); if (!(c >= (2 * v))) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } return 0; }
TRUE
[ 13.651534979988355, 13.849182462960016, 13.90505934302928 ]
13.849182
int counter = 0; int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; x = (int) rand(); y = (int) rand(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 10) { INVARIANT_MARKER_1(); if (!(b != 0)) { break; } long long c; long long k; c = a; k = 0; while ((counter++) < 10) { INVARIANT_MARKER_2(); if (!(c >= b)) { break; } long long d; long long v; d = 1; v = b; while ((counter++) < 10) { INVARIANT_MARKER_3(); assert(a == ((y * r) + (x * p))); if (!(c >= (2 * v))) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } return 0; }
easy
60
ps2-ll_valuebound10_1.c
extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "ps2-ll.c", 3, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { int k; long long y, x, c; k = __VERIFIER_nondet_int(); assume_abort_if_not(k >= 0 && k <= 10); y = 0; x = 0; c = 0; while (1) { __VERIFIER_assert((y * y) - 2 * x + y == 0); if (!(c < k)) { break; } c = c + 1; y = y + 1; x = y + x; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int k; long long y; long long x; long long c; k = __VERIFIER_nondet_int(); assume((k >= 0) && (k <= 10)); y = 0; x = 0; c = 0; while (1) { ; assert((((y * y) - (2 * x)) + y) == 0); if (!(c < k)) { break; } c = c + 1; y = y + 1; x = y + x; } return 0; }
TRUE
[ 4.855527724022977, 4.5386014800169505, 5.347145535983145 ]
4.855528
int main() { int k; long long y; long long x; long long c; k = (int) rand(); assume((k >= 0) && (k <= 10)); y = 0; x = 0; c = 0; while (1) { INVARIANT_MARKER_1(); assert((((y * y) - (2 * x)) + y) == 0); if (!(c < k)) { break; } c = c + 1; y = y + 1; x = y + x; } return 0; }
easy
61
prod4br-ll_unwindbound5_2.c
/* algorithm for computing the product of two natural numbers */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "prod4br-ll.c", 5, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { int x, y; long long a, b, p, q; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; while (counter++ < 5) { if (!(a != 0 && b != 0)) { break; } if (a % 2 == 0 && b % 2 == 0) { a = a / 2; b = b / 2; p = 4 * p; } else if (a % 2 == 1 && b % 2 == 0) { a = a - 1; q = q + b * p; } else if (a % 2 == 0 && b % 2 == 1) { b = b - 1; q = q + a * p; } else { a = a - 1; b = b - 1; q = q + (a + b + 1) * p; /*fix a bug here--- was (a+b-1)*/ } } __VERIFIER_assert(q == (long long)x * y); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { int x; int y; long long a; long long b; long long p; long long q; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume(y >= 1); a = x; b = y; p = 1; q = 0; while ((counter++) < 5) { ; if (!((a != 0) && (b != 0))) { break; } if (((a % 2) == 0) && ((b % 2) == 0)) { a = a / 2; b = b / 2; p = 4 * p; } else if (((a % 2) == 1) && ((b % 2) == 0)) { a = a - 1; q = q + (b * p); } else if (((a % 2) == 0) && ((b % 2) == 1)) { b = b - 1; q = q + (a * p); } else { a = a - 1; b = b - 1; q = q + (((a + b) + 1) * p); } } assert(q == (((long long) x) * y)); return 0; }
FALSE
[ 31.40467155002989, 31.45342440297827, 31.651573865965474 ]
31.453424
int counter = 0; int main() { int x; int y; long long a; long long b; long long p; long long q; x = (int) rand(); y = (int) rand(); assume(y >= 1); a = x; b = y; p = 1; q = 0; while ((counter++) < 5) { INVARIANT_MARKER_1(); if (!((a != 0) && (b != 0))) { break; } if (((a % 2) == 0) && ((b % 2) == 0)) { a = a / 2; b = b / 2; p = 4 * p; } else if (((a % 2) == 1) && ((b % 2) == 0)) { a = a - 1; q = q + (b * p); } else if (((a % 2) == 0) && ((b % 2) == 1)) { b = b - 1; q = q + (a * p); } else { a = a - 1; b = b - 1; q = q + (((a + b) + 1) * p); } } assert(q == (((long long) x) * y)); return 0; }
hard
62
functions_1-1_1.c
extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "functions_1-1.c", 3, "reach_error"); } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } return; } unsigned int f(unsigned int z) { return z + 2; } int main(void) { unsigned int x = 0; while (x < 0x0fffffff) { x = f(x); } __VERIFIER_assert(!(x % 2)); }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } unsigned int f(unsigned int z) { return z + 2; } int main(void) { unsigned int x = 0; while (x < 0x0fffffff) { ; x = f(x); } assert(!(x % 2)); }
TRUE
[ 5.013385355006903, 4.816026846005116, 5.131091438990552 ]
5.013385
unsigned int f(unsigned int z) { return z + 2; } int main(void) { unsigned int x = 0; while (x < 0x0fffffff) { INVARIANT_MARKER_1(); x = f(x); } assert(!(x % 2)); }
easy
63
cohencu-ll_valuebound10_9.c
/* Printing consecutive cubes, by Cohen http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohencu.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohencu-ll.c", 8, "reach_error"); } extern unsigned short __VERIFIER_nondet_ushort(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { short a; long long n, x, y, z; a = __VERIFIER_nondet_ushort(); assume_abort_if_not(a >= 0 && a <= 10); n = 0; x = 0; y = 1; z = 6; while (1) { if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } __VERIFIER_assert(2 * y * y - 3 * x * z - 18 * x - 10 * y + 3 * z - 10 == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { short a; long long n; long long x; long long y; long long z; a = __VERIFIER_nondet_ushort(); assume((a >= 0) && (a <= 10)); n = 0; x = 0; y = 1; z = 6; while (1) { ; if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert((((((((2 * y) * y) - ((3 * x) * z)) - (18 * x)) - (10 * y)) + (3 * z)) - 10) == 0); return 0; }
TRUE
[ 41.15077130001737, 40.72754660400096, 41.155421997013036 ]
41.150771
int main() { short a; long long n; long long x; long long y; long long z; a = (ushort) rand(); assume((a >= 0) && (a <= 10)); n = 0; x = 0; y = 1; z = 6; while (1) { INVARIANT_MARKER_1(); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert((((((((2 * y) * y) - ((3 * x) * z)) - (18 * x)) - (10 * y)) + (3 * z)) - 10) == 0); return 0; }
hard
64
cohencu_10.c
/* Printing consecutive cubes, by Cohen http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohencu.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohencu.c", 8, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { int a, n, x, y, z; a = __VERIFIER_nondet_int(); n = 0; x = 0; y = 1; z = 6; while (1) { if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } __VERIFIER_assert(z * z - 12 * y - 6 * z + 12 == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int a; int n; int x; int y; int z; a = __VERIFIER_nondet_int(); n = 0; x = 0; y = 1; z = 6; while (1) { ; if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert(((((z * z) - (12 * y)) - (6 * z)) + 12) == 0); return 0; }
TRUE
[ 5.36300981498789, 5.066456013999414, 5.29667468596017 ]
5.296675
int main() { int a; int n; int x; int y; int z; a = (int) rand(); n = 0; x = 0; y = 1; z = 6; while (1) { INVARIANT_MARKER_1(); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert(((((z * z) - (12 * y)) - (6 * z)) + 12) == 0); return 0; }
easy
65
cohencu-ll_unwindbound5_9.c
/* Printing consecutive cubes, by Cohen http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohencu.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohencu-ll.c", 8, "reach_error"); } extern unsigned short __VERIFIER_nondet_ushort(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { short a; long long n, x, y, z; a = __VERIFIER_nondet_ushort(); n = 0; x = 0; y = 1; z = 6; while (counter++ < 5) { if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } __VERIFIER_assert(2 * y * y - 3 * x * z - 18 * x - 10 * y + 3 * z - 10 == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { short a; long long n; long long x; long long y; long long z; a = __VERIFIER_nondet_ushort(); n = 0; x = 0; y = 1; z = 6; while ((counter++) < 5) { ; if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert((((((((2 * y) * y) - ((3 * x) * z)) - (18 * x)) - (10 * y)) + (3 * z)) - 10) == 0); return 0; }
TRUE
[ 23.648402696999256, 23.314091765030753, 23.08981750899693 ]
23.314092
int counter = 0; int main() { short a; long long n; long long x; long long y; long long z; a = (ushort) rand(); n = 0; x = 0; y = 1; z = 6; while ((counter++) < 5) { INVARIANT_MARKER_1(); if (!(n <= a)) { break; } n = n + 1; x = x + y; y = y + z; z = z + 6; } assert((((((((2 * y) * y) - ((3 * x) * z)) - (18 * x)) - (10 * y)) + (3 * z)) - 10) == 0); return 0; }
easy
66
egcd3-ll_unwindbound5_4.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd3-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { int x, y; long long a, b, p, q, r, s; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (counter++ < 5) { if (!(b != 0)) { break; } long long c, k; c = a; k = 0; while (counter++ < 5) { if (!(c >= b)) { break; } long long d, v; d = 1; v = b; while (counter++ < 5) { __VERIFIER_assert(v == b * d); if (!(c >= 2 * v)) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - q * k; temp = r; r = s; s = temp - s * k; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 5) { ; if (!(b != 0)) { break; } long long c; long long k; c = a; k = 0; while ((counter++) < 5) { ; if (!(c >= b)) { break; } long long d; long long v; d = 1; v = b; while ((counter++) < 5) { ; assert(v == (b * d)); if (!(c >= (2 * v))) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } return 0; }
TRUE
[ 5.358430303982459, 5.454187760013156, 5.761681288015097 ]
5.454188
int counter = 0; int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; x = (int) rand(); y = (int) rand(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while ((counter++) < 5) { INVARIANT_MARKER_1(); if (!(b != 0)) { break; } long long c; long long k; c = a; k = 0; while ((counter++) < 5) { INVARIANT_MARKER_2(); if (!(c >= b)) { break; } long long d; long long v; d = 1; v = b; while ((counter++) < 5) { INVARIANT_MARKER_3(); assert(v == (b * d)); if (!(c >= (2 * v))) { break; } d = 2 * d; v = 2 * v; } c = c - v; k = k + d; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } return 0; }
easy
67
ps4-ll_valuebound1_1.c
extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "ps4-ll.c", 3, "reach_error"); } extern short __VERIFIER_nondet_short(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { short k; long long y, x, c; k = __VERIFIER_nondet_short(); assume_abort_if_not(k >= 0 && k <= 1); y = 0; x = 0; c = 0; while (1) { __VERIFIER_assert(4 * x - y * y * y * y - 2 * y * y * y - y * y == 0); if (!(c < k)) { break; } c = c + 1; y = y + 1; x = y * y * y + x; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { short k; long long y; long long x; long long c; k = __VERIFIER_nondet_short(); assume((k >= 0) && (k <= 1)); y = 0; x = 0; c = 0; while (1) { ; assert(((((4 * x) - (((y * y) * y) * y)) - (((2 * y) * y) * y)) - (y * y)) == 0); if (!(c < k)) { break; } c = c + 1; y = y + 1; x = ((y * y) * y) + x; } return 0; }
TRUE
[ 5.135284492047504, 5.251483453961555, 4.936219361028634 ]
5.135284
int main() { short k; long long y; long long x; long long c; k = (short) rand(); assume((k >= 0) && (k <= 1)); y = 0; x = 0; c = 0; while (1) { INVARIANT_MARKER_1(); assert(((((4 * x) - (((y * y) * y) * y)) - (((2 * y) * y) * y)) - (y * y)) == 0); if (!(c < k)) { break; } c = c + 1; y = y + 1; x = ((y * y) * y) + x; } return 0; }
easy
68
benchmark46_disjunctive_1.c
#include <assert.h> void reach_error(void) { assert(0); } extern int __VERIFIER_nondet_int(void); extern _Bool __VERIFIER_nondet_bool(void); void __VERIFIER_assert(int cond) { if (!cond) { reach_error(); } } /* 46.cfg: names= x y z precondition= y>0 || x>0 || z>0 loopcondition= #loop=if (x>0) x++; else x--; x=-1 * x; branchcondition=x>0 branch=x++; branchcondition=y>0 branch=y++; branchcondition= branch=z++; postcondition=x>0 || y>0 || z>0 learners=linear disjunctive */ int main() { int x = __VERIFIER_nondet_int(); int y = __VERIFIER_nondet_int(); int z = __VERIFIER_nondet_int(); if (!(y > 0 || x > 0 || z > 0)) { return 0; } while (__VERIFIER_nondet_bool()) { if (x > 0) { x++; } if (y > 0) { y++; } else { z++; } } __VERIFIER_assert(x > 0 || y > 0 || z > 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { int x = __VERIFIER_nondet_int(); int y = __VERIFIER_nondet_int(); int z = __VERIFIER_nondet_int(); if (!(((y > 0) || (x > 0)) || (z > 0))) { return 0; } while (__VERIFIER_nondet_bool()) { ; if (x > 0) { x++; } if (y > 0) { y++; } else { z++; } } assert(((x > 0) || (y > 0)) || (z > 0)); return 0; }
TRUE
[ 4.641721007996239, 5.060836253978778, 4.509698898007628 ]
4.641721
int main() { int x = (int) rand(); int y = (int) rand(); int z = (int) rand(); if (!(((y > 0) || (x > 0)) || (z > 0))) { return 0; } while ((bool) rand()) { INVARIANT_MARKER_1(); if (x > 0) { x++; } if (y > 0) { y++; } else { z++; } } assert(((x > 0) || (y > 0)) || (z > 0)); return 0; }
easy
69
egcd2-ll_unwindbound5_2.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd2-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { int x, y; long long a, b, p, q, r, s, c, k, xy, yy; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; c = 0; k = 0; xy = (long long)x * y; yy = (long long)y * y; assume_abort_if_not(xy < 2147483647); assume_abort_if_not(yy < 2147483647); while (counter++ < 5) { if (!(b != 0)) { break; } c = a; k = 0; while (counter++ < 5) { __VERIFIER_assert(a == y * r + x * p); if (!(c >= b)) { break; } c = c - b; k = k + 1; } a = b; b = c; long long temp; temp = p; p = q; q = temp - q * k; temp = r; r = s; s = temp - s * k; } return a; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; long long c; long long k; long long xy; long long yy; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; c = 0; k = 0; xy = ((long long) x) * y; yy = ((long long) y) * y; assume(xy < 2147483647); assume(yy < 2147483647); while ((counter++) < 5) { ; if (!(b != 0)) { break; } c = a; k = 0; while ((counter++) < 5) { ; assert(a == ((y * r) + (x * p))); if (!(c >= b)) { break; } c = c - b; k = k + 1; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } return a; }
TRUE
[ 7.904868733021431, 8.159748744976241, 8.231844606983941 ]
8.159749
int counter = 0; int main() { int x; int y; long long a; long long b; long long p; long long q; long long r; long long s; long long c; long long k; long long xy; long long yy; x = (int) rand(); y = (int) rand(); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; c = 0; k = 0; xy = ((long long) x) * y; yy = ((long long) y) * y; assume(xy < 2147483647); assume(yy < 2147483647); while ((counter++) < 5) { INVARIANT_MARKER_1(); if (!(b != 0)) { break; } c = a; k = 0; while ((counter++) < 5) { INVARIANT_MARKER_2(); assert(a == ((y * r) + (x * p))); if (!(c >= b)) { break; } c = c - b; k = k + 1; } a = b; b = c; long long temp; temp = p; p = q; q = temp - (q * k); temp = r; r = s; s = temp - (s * k); } return a; }
easy
70
egcd-ll_valuebound5_7.c
/* extended Euclid's algorithm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "egcd-ll.c", 4, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int main() { long long a, b, p, q, r, s; int x, y; x = __VERIFIER_nondet_int(); assume_abort_if_not(x >= 0 && x <= 5); y = __VERIFIER_nondet_int(); assume_abort_if_not(y >= 0 && y <= 5); assume_abort_if_not(x >= 1); assume_abort_if_not(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } __VERIFIER_assert(q * x + s * y - b == 0); return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = __VERIFIER_nondet_int(); assume((x >= 0) && (x <= 5)); y = __VERIFIER_nondet_int(); assume((y >= 0) && (y <= 5)); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { ; if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } assert((((q * x) + (s * y)) - b) == 0); return 0; }
TRUE
[ 16.865965772012714, 17.11991604999639, 17.11201445403276 ]
17.112014
int main() { long long a; long long b; long long p; long long q; long long r; long long s; int x; int y; x = (int) rand(); assume((x >= 0) && (x <= 5)); y = (int) rand(); assume((y >= 0) && (y <= 5)); assume(x >= 1); assume(y >= 1); a = x; b = y; p = 1; q = 0; r = 0; s = 1; while (1) { INVARIANT_MARKER_1(); if (!(a != b)) { break; } if (a > b) { a = a - b; p = p - q; r = r - s; } else { b = b - a; q = q - p; s = s - r; } } assert((((q * x) + (s * y)) - b) == 0); return 0; }
easy
71
cohendiv-ll_unwindbound5_4.c
/* Cohen's integer division returns x % y http://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/cohendiv.htm */ extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__((__nothrow__, __leaf__)) __attribute__((__noreturn__)); void reach_error() { __assert_fail("0", "cohendiv-ll.c", 8, "reach_error"); } extern int __VERIFIER_nondet_int(void); extern void abort(void); void assume_abort_if_not(int cond) { if (!cond) { abort(); } } void __VERIFIER_assert(int cond) { if (!(cond)) { ERROR : { reach_error(); } } return; } int counter = 0; int main() { int x, y; long long q, r, a, b; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume_abort_if_not(y >= 1); q = 0; r = x; a = 0; b = 0; while (counter++ < 5) { if (!(r >= y)) { break; } a = 1; b = y; while (counter++ < 5) { __VERIFIER_assert(x == q * y + r); if (!(r >= 2 * b)) { break; } a = 2 * a; b = 2 * b; } r = r - b; q = q + a; } return 0; }
void assert(int cond) { if (!(cond)) { ERROR : { reach_error(); abort(); } } } void assume(int cond) { if (!cond) { abort(); } } int counter = 0; int main() { int x; int y; long long q; long long r; long long a; long long b; x = __VERIFIER_nondet_int(); y = __VERIFIER_nondet_int(); assume(y >= 1); q = 0; r = x; a = 0; b = 0; while ((counter++) < 5) { ; if (!(r >= y)) { break; } a = 1; b = y; while ((counter++) < 5) { ; assert(x == ((q * y) + r)); if (!(r >= (2 * b))) { break; } a = 2 * a; b = 2 * b; } r = r - b; q = q + a; } return 0; }
TRUE
[ 7.93403100798605, 7.852409225015435, 8.094408389995806 ]
7.934031
int counter = 0; int main() { int x; int y; long long q; long long r; long long a; long long b; x = (int) rand(); y = (int) rand(); assume(y >= 1); q = 0; r = x; a = 0; b = 0; while ((counter++) < 5) { INVARIANT_MARKER_1(); if (!(r >= y)) { break; } a = 1; b = y; while ((counter++) < 5) { INVARIANT_MARKER_2(); assert(x == ((q * y) + r)); if (!(r >= (2 * b))) { break; } a = 2 * a; b = 2 * b; } r = r - b; q = q + a; } return 0; }
easy
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
67