Datasets:
Search is not available for this dataset
image
imagewidth (px) 1.37k
4.1k
| label
class label 5
classes |
|---|---|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
0content_709
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
|
1content_log
|
End of preview. Expand
in Data Studio
PST50: Benchmark for Photorealistic Style Transfer
PST50 is the first benchmark dataset designed for rigorous evaluation of Photorealistic Style Transfer (PST). It includes high-resolution, professionally curated content-style pairs with ground truth stylizations, suitable for both paired and unpaired evaluation protocols.
This dataset is introduced in the paper:
SA-LUT: Spatial Adaptive 4D Look-Up Table for Photorealistic Style Transfer
Project Page β’ Paper β’ Code
π Dataset Structure
PST50/
βββ video/ # Content videos in log color space
βββ content_709/ # Content images in Rec.709 color space
βββ content_log/ # Content image in log color space
βββ paired_gt/ # Ground truth stylized outputs for paired evaluation
βββ paired style/ # Style references for paired evaluation
βββ unpaired_style/ # Style references for unpaired evaluation
π§ͺ Evaluation Protocol
- Paired: Compare stylized outputs against
paired_gtusing metrics like LPIPS, PSNR, SSIM, and H-Corr. - Unpaired: Use
unpaired_stylewith stylized outputs for qualitative or perceptual studies. - Video: Apply models to video sequences to test temporal consistency and real-time stylization.
π License: cc-by-4.0
- Downloads last month
- 5