Datasets:
Enhance FLAIR-HUB dataset card with MAESTRO paper, code, and sample usage
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,5 +1,10 @@
|
|
| 1 |
---
|
| 2 |
license: etalab-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
tags:
|
| 4 |
- Multimodal
|
| 5 |
- Earth Observation
|
|
@@ -9,11 +14,6 @@ tags:
|
|
| 9 |
- Environement
|
| 10 |
- LandCover
|
| 11 |
- Agriculture
|
| 12 |
-
task_categories:
|
| 13 |
-
- image-segmentation
|
| 14 |
-
pretty_name: FLAIR-HUB
|
| 15 |
-
size_categories:
|
| 16 |
-
- 100K<n<1M
|
| 17 |
---
|
| 18 |
|
| 19 |
# FLAIR-HUB : Large-scale Multimodal Dataset for Land Cover and Crop Mapping
|
|
@@ -32,8 +32,10 @@ learning methods, and will continue to grow with new modalities and annotations.
|
|
| 32 |
## 🔗 Links
|
| 33 |
|
| 34 |
📄 <a href="https://arxiv.org/abs/2506.07080" target="_blank"><b>Dataset Preprint</b></a><br>
|
|
|
|
| 35 |
📁 <a href="https://storage.gra.cloud.ovh.net/v1/AUTH_366279ce616242ebb14161b7991a8461/defi-ia/flair_hub/FLAIR-HUB_TOY_DATASET.zip" target="_blank"><b>Toy dataset (~750MB) -direct download-</b></a><br>
|
| 36 |
💻 <a href="https://github.com/IGNF/FLAIR-HUB" target="_blank"><b>Source Code (GitHub)</b></a><br>
|
|
|
|
| 37 |
🏠 <a href="https://ignf.github.io/FLAIR/" target="_blank"><b>FLAIR datasets page </b></a><br>
|
| 38 |
✉️ <a href="mailto:[email protected]"><b>Contact Us</b></a> – [email protected] – Questions or collaboration inquiries welcome!<br>
|
| 39 |
<hr>
|
|
@@ -183,8 +185,6 @@ FLAIR-HUB uses an <b>official split for benchmarking, corresponding to the split
|
|
| 183 |
<p align="center"><img src="datacard_imgs/FLAIR-HUB_splits_oneline.png" alt="" style="width:80%;max-width:1300px;" /></p>
|
| 184 |
<hr>
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
| 188 |
## 🏆 Bechmark scores
|
| 189 |
|
| 190 |
|
|
@@ -237,8 +237,25 @@ The **Model ID** can be used to retrieve the corresponding pre-trained model fro
|
|
| 237 |
| LPIS-J | ✓ | ✓ | ✓ | ✓ | 186.9 | 53 | **88.0** | 35.4 |
|
| 238 |
| LPIS-K | | ✓ | | | 89.2 | 14 | 84.5 | 15.1 |
|
| 239 |
|
|
|
|
| 240 |
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
## 📚 How to Cite
|
| 244 |
|
|
@@ -263,5 +280,4 @@ DOI: https://doi.org/10.48550/arXiv.2506.07080
|
|
| 263 |
|
| 264 |
## ⚙️ Acknowledgement
|
| 265 |
|
| 266 |
-
Experiments have been conducted using HPC/AI resources provided by GENCI-IDRIS (Grant 2024-A0161013803, 2024-AD011014286R2 and 2025-A0181013803).
|
| 267 |
-
|
|
|
|
| 1 |
---
|
| 2 |
license: etalab-2.0
|
| 3 |
+
size_categories:
|
| 4 |
+
- 100K<n<1M
|
| 5 |
+
task_categories:
|
| 6 |
+
- image-segmentation
|
| 7 |
+
pretty_name: FLAIR-HUB
|
| 8 |
tags:
|
| 9 |
- Multimodal
|
| 10 |
- Earth Observation
|
|
|
|
| 14 |
- Environement
|
| 15 |
- LandCover
|
| 16 |
- Agriculture
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
---
|
| 18 |
|
| 19 |
# FLAIR-HUB : Large-scale Multimodal Dataset for Land Cover and Crop Mapping
|
|
|
|
| 32 |
## 🔗 Links
|
| 33 |
|
| 34 |
📄 <a href="https://arxiv.org/abs/2506.07080" target="_blank"><b>Dataset Preprint</b></a><br>
|
| 35 |
+
📄 <a href="https://huggingface.co/papers/2508.10894" target="_blank"><b>MAESTRO Paper (using this dataset)</b></a><br>
|
| 36 |
📁 <a href="https://storage.gra.cloud.ovh.net/v1/AUTH_366279ce616242ebb14161b7991a8461/defi-ia/flair_hub/FLAIR-HUB_TOY_DATASET.zip" target="_blank"><b>Toy dataset (~750MB) -direct download-</b></a><br>
|
| 37 |
💻 <a href="https://github.com/IGNF/FLAIR-HUB" target="_blank"><b>Source Code (GitHub)</b></a><br>
|
| 38 |
+
💻 <a href="https://github.com/ignf/maestro" target="_blank"><b>MAESTRO Code (GitHub, uses this dataset)</b></a><br>
|
| 39 |
🏠 <a href="https://ignf.github.io/FLAIR/" target="_blank"><b>FLAIR datasets page </b></a><br>
|
| 40 |
✉️ <a href="mailto:[email protected]"><b>Contact Us</b></a> – [email protected] – Questions or collaboration inquiries welcome!<br>
|
| 41 |
<hr>
|
|
|
|
| 185 |
<p align="center"><img src="datacard_imgs/FLAIR-HUB_splits_oneline.png" alt="" style="width:80%;max-width:1300px;" /></p>
|
| 186 |
<hr>
|
| 187 |
|
|
|
|
|
|
|
| 188 |
## 🏆 Bechmark scores
|
| 189 |
|
| 190 |
|
|
|
|
| 237 |
| LPIS-J | ✓ | ✓ | ✓ | ✓ | 186.9 | 53 | **88.0** | 35.4 |
|
| 238 |
| LPIS-K | | ✓ | | | 89.2 | 14 | 84.5 | 15.1 |
|
| 239 |
|
| 240 |
+
<hr>
|
| 241 |
|
| 242 |
+
## ✨ Sample Usage
|
| 243 |
+
|
| 244 |
+
This dataset is extensively used by the [MAESTRO model](https://huggingface.co/papers/2508.10894) for masked autoencoding on multimodal Earth observation data. You can find the MAESTRO model's code on its [GitHub repository](https://github.com/ignf/maestro).
|
| 245 |
+
|
| 246 |
+
A minimal example for using FLAIR-HUB with the MAESTRO framework:
|
| 247 |
+
```bash
|
| 248 |
+
poetry run python main.py \
|
| 249 |
+
model.model=mae \
|
| 250 |
+
model.model_size=medium \
|
| 251 |
+
run.exp_name=mae-m_flair \
|
| 252 |
+
run.exp_dir=/path/to/experiments/dir \
|
| 253 |
+
datasets.root_dir=/path/to/dataset/dir \
|
| 254 |
+
datasets.flair.rel_dir=FLAIR-HUB \
|
| 255 |
+
datasets.filter_pretrain=[flair] \
|
| 256 |
+
datasets.filter_finetune=[flair]
|
| 257 |
+
```
|
| 258 |
+
<hr>
|
| 259 |
|
| 260 |
## 📚 How to Cite
|
| 261 |
|
|
|
|
| 280 |
|
| 281 |
## ⚙️ Acknowledgement
|
| 282 |
|
| 283 |
+
Experiments have been conducted using HPC/AI resources provided by GENCI-IDRIS (Grant 2024-A0161013803, 2024-AD011014286R2 and 2025-A0181013803).
|
|
|