Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
case_id
int64
0
30k
chord_root
float64
0.7
1.2
span
float64
1
1.5
taper_ratio
float64
0.4
0.7
sweep
float64
0
40
dihedral
float64
0
0
inflow_velocity
float64
150
300
AOA
float64
-10
10
Reynolds_number
float64
5.14M
19.5M
Mach_number
float64
0.43
0.87
0
0.88727
1.29039
0.484776
6.282159
0
194.866519
-9.959051
8,556,396.551818
0.56315
1
1.175357
1.263486
0.537603
3.820351
0
226.424622
-5.922995
13,507,729.4363
0.654351
2
1.065997
1.175518
0.429765
5.517568
0
246.59122
8.782913
12,681,826.221531
0.712631
3
0.999329
1.246606
0.534051
18.939576
0
298.826296
-1.125479
15,130,999.537996
0.863586
4
0.778009
1.182548
0.460924
35.381361
0
254.306399
-7.553473
9,682,615.114471
0.734927
5
0.777997
1.328966
0.483279
12.36883
0
221.798477
-0.244126
8,533,511.416665
0.640981
6
0.729042
1.417515
0.543434
17.671964
0
210.505597
-5.694191
7,811,538.605002
0.608346
7
1.133088
1.393447
0.66589
1.334279
0
195.785976
-2.961209
12,001,128.461416
0.565807
8
1.000558
1.170346
0.573522
24.002992
0
176.205225
8.675768
9,107,224.806279
0.50922
9
1.054036
1.25471
0.4053
13.58132
0
194.784292
4.389202
9,797,280.836096
0.562912
10
0.710292
1.005328
0.443053
26.756211
0
266.773109
3.247327
9,197,148.794323
0.770955
11
1.184955
1.435139
0.419003
22.860827
0
289.089691
5.393797
16,446,692.157819
0.835448
12
1.116221
1.122698
0.45588
29.003498
0
231.197902
1.225599
12,599,987.973978
0.668145
13
0.80617
1.220546
0.503099
30.98633
0
151.559532
-5.859245
6,099,339.7235
0.437996
14
0.790912
1.076275
0.452518
9.594761
0
181.374121
-5.599095
6,993,037.163786
0.524158
15
0.791702
1.339054
0.538503
20.287458
0
266.197273
6.951033
10,701,491.869284
0.769291
16
0.852121
1.272649
0.647255
22.324451
0
159.595595
-5.136494
7,288,151.404586
0.46122
17
0.962378
1.182395
0.647663
17.468973
0
249.294532
-3.490777
12,860,055.026131
0.720443
18
0.915973
1.267597
0.50189
15.407036
0
186.011778
-9.973089
8,500,521.410954
0.53756
19
0.845615
1.084368
0.498001
37.856147
0
247.938639
-5.680802
10,440,833.319435
0.716525
20
1.005926
1.387819
0.623726
4.43015
0
284.295035
0.002713
15,146,059.528277
0.821592
21
0.769747
1.13298
0.524522
4.971136
0
228.302991
-5.859412
8,863,344.411757
0.659779
22
0.846072
1.307512
0.691035
24.651548
0
160.148832
-6.454094
7,423,963.176396
0.462818
23
0.883181
1.4497
0.533486
9.736512
0
209.980417
2.112752
9,393,982.061169
0.606828
25
1.092588
1.193767
0.402946
3.34427
0
283.785208
7.393338
14,780,559.263709
0.820119
26
0.799837
1.067459
0.686234
29.669183
0
250.301469
8.909546
10,942,395.042278
0.723353
27
0.957117
1.454329
0.435623
28.780018
0
157.938796
-6.884788
7,312,335.838895
0.456432
28
0.996207
1.180039
0.452553
29.274077
0
189.249805
9.202285
9,190,817.740447
0.546918
29
0.723225
1.10667
0.411501
26.829002
0
223.568181
3.191393
7,737,016.583625
0.646096
30
1.003772
1.338238
0.539481
3.166273
0
217.475224
-5.478727
11,089,967.818953
0.628488
31
0.785262
1.271596
0.522516
13.032478
0
177.849093
-0.722519
7,036,943.511323
0.513971
32
0.732526
1.408468
0.64473
4.215501
0
165.48724
-0.141577
6,488,295.730922
0.478246
33
1.174443
1.376534
0.566608
26.304843
0
188.120971
-3.643673
11,374,061.266169
0.543656
34
1.182816
1.487335
0.574688
8.989829
0
266.896887
3.852061
16,316,823.730594
0.771313
35
1.104199
1.045266
0.637073
21.999134
0
158.003375
-5.413477
9,302,185.715882
0.456618
36
0.852307
1.040136
0.57488
39.581853
0
209.823551
5.819332
9,244,133.340546
0.606375
37
0.748836
1.45368
0.569614
3.482511
0
211.564522
2.887962
8,168,052.109314
0.611406
38
1.042117
1.477866
0.678558
37.062892
0
248.134435
3.480854
14,078,692.812044
0.71709
39
0.920076
1.203317
0.531115
18.277591
0
156.314604
0.019026
7,276,887.596751
0.451738
40
0.761019
1.227935
0.590331
22.35921
0
195.435067
1.062176
7,746,994.18666
0.564793
41
0.947588
1.184349
0.5153
32.120608
0
203.943678
-3.415501
9,703,751.738167
0.589382
42
0.717194
1.388843
0.595202
30.791688
0
271.660405
-2.600413
10,172,984.37918
0.785079
43
1.15466
1.385393
0.403017
1.262781
0
205.0731
5.606662
11,288,107.662654
0.592646
44
0.82939
1.11021
0.618005
22.245618
0
266.767762
6.400219
11,684,577.292927
0.770939
45
1.031261
1.191947
0.634528
38.472666
0
253.111322
-1.065816
13,899,417.590007
0.731473
46
0.855856
1.106218
0.663211
19.309803
0
249.489015
-8.57599
11,535,622.722585
0.721005
47
0.960034
1.023312
0.549949
36.610629
0
204.747296
3.776212
10,037,034.833156
0.591705
48
0.973355
1.028061
0.485854
8.528871
0
182.853116
2.307876
8,812,364.159932
0.528432
49
0.792427
1.073412
0.619144
28.066602
0
250.323439
-4.863829
10,481,636.819639
0.723417
50
1.184792
1.014941
0.684705
23.464635
0
288.610202
6.996054
18,675,193.860832
0.834062
51
1.087566
1.211588
0.630956
5.25685
0
206.089558
-1.137668
11,913,778.106338
0.595584
52
1.169749
1.03201
0.673355
6.019913
0
179.889655
-6.851516
11,426,537.825593
0.519868
53
1.147414
1.423706
0.435801
28.008473
0
238.266237
-7.69052
13,225,737.73808
0.688572
54
0.99895
1.356041
0.677278
4.719901
0
206.732404
-8.531757
11,236,470.347609
0.597442
55
1.160937
1.391821
0.613233
25.536842
0
171.458779
7.134244
10,487,062.016863
0.495503
56
0.744246
1.30874
0.646685
35.519946
0
265.020987
4.309126
10,567,383.541408
0.765891
57
0.797991
1.331939
0.526269
12.414902
0
205.797403
9.001328
8,289,771.900282
0.59474
58
0.722614
1.056705
0.570991
9.530857
0
233.497007
-6.480354
8,705,044.893017
0.674789
59
0.862665
1.029084
0.584
21.559261
0
281.756632
2.592427
12,620,877.220952
0.814256
60
0.894339
1.494607
0.555632
37.111014
0
212.361208
3.123066
9,724,890.336413
0.613708
61
0.835675
1.186475
0.428973
2.960284
0
228.32386
-1.442532
9,201,977.803582
0.659839
62
1.114369
1.025635
0.469596
35.077148
0
158.449673
-7.866191
8,676,085.521779
0.457908
63
0.878377
1.079823
0.441864
6.104505
0
210.054346
8.343543
8,950,562.04089
0.607042
64
0.840467
1.437103
0.648433
16.777814
0
292.913899
-2.477371
13,201,201.083445
0.8465
65
0.971348
1.102899
0.511776
32.88627
0
230.920923
-9.935476
11,243,808.390745
0.667345
66
0.770462
1.233521
0.486397
22.57525
0
246.506492
-7.260812
9,406,102.006239
0.712386
67
1.101098
1.333737
0.465499
10.977716
0
221.790859
2.351432
11,976,879.84937
0.640959
68
0.737275
1.482934
0.610659
4.917011
0
222.363256
8.33296
8,626,209.63039
0.642614
69
1.193443
1.007046
0.55602
25.269624
0
159.043736
4.740414
9,720,946.564465
0.459625
70
1.086122
1.243791
0.577621
32.663894
0
195.916546
-6.438473
11,014,212.706155
0.566185
71
0.799358
1.498016
0.626903
19.19235
0
238.118711
-2.177416
10,096,944.814653
0.688146
72
0.702761
1.060861
0.69095
27.680957
0
160.250761
-8.095323
6,170,120.335346
0.463113
73
1.107731
1.061858
0.622357
22.475936
0
288.375413
0.904142
16,906,701.658541
0.833384
74
1.053429
1.043521
0.691336
28.714502
0
283.592627
-9.365415
16,370,839.402395
0.819562
75
1.064504
1.253922
0.609295
36.781587
0
169.404529
-6.065175
9,482,087.61165
0.489567
76
1.085635
1.174206
0.603165
15.026952
0
250.636118
-0.028574
14,263,715.688769
0.72432
77
0.737022
1.358127
0.44327
29.248921
0
234.137799
-3.229902
8,376,630.026265
0.676641
78
0.879233
1.285648
0.427892
38.243966
0
171.993236
5.664718
7,289,470.310748
0.497048
79
0.757935
1.29042
0.407179
8.97717
0
229.172941
-4.212756
8,295,679.718099
0.662293
80
1.131552
1.25553
0.608116
36.800016
0
221.395153
6.234376
13,164,942.178941
0.639816
81
1.011649
1.496032
0.594717
16.65995
0
242.69826
6.497513
12,816,728.176783
0.70138
82
0.865449
1.269525
0.589399
2.155909
0
258.044043
1.719958
11,627,057.232259
0.745728
83
0.731779
1.036182
0.587522
8.815924
0
192.625461
-4.609896
7,332,030.871527
0.556674
84
0.855491
1.161097
0.606508
35.524817
0
273.366222
7.881077
12,279,728.471664
0.790008
85
0.862592
1.390339
0.650657
22.192965
0
156.707148
-6.872882
7,256,599.43349
0.452872
86
1.064803
1.314228
0.617832
36.737112
0
237.344789
-1.294023
13,345,422.120716
0.685909
87
1.018779
1.341974
0.579789
21.445456
0
242.563454
-8.813123
12,804,830.492391
0.700991
88
1.143606
1.460903
0.46538
0.145859
0
227.107364
0.965627
12,736,722.675791
0.656324
89
0.936107
1.22189
0.630181
27.809874
0
223.439146
0.985104
11,113,580.696804
0.645723
90
0.759797
1.009761
0.474887
17.931464
0
194.543453
6.699447
7,281,028.959465
0.562216
91
1.056622
1.495045
0.604094
3.120828
0
209.932824
-7.903959
11,633,383.714488
0.606691
92
1.080393
1.227289
0.440411
10.605967
0
228.877082
-8.08011
11,987,634.730778
0.661438
93
0.980639
1.048806
0.553013
5.951704
0
216.219552
9.350515
10,843,133.331447
0.624859
94
1.085484
1.274292
0.589872
18.011531
0
198.435893
0.618594
11,217,083.360334
0.573465
95
0.946898
1.295102
0.644555
12.075859
0
294.641681
-6.641194
14,931,460.248511
0.851493
96
0.961366
1.282167
0.610761
8.372055
0
203.909612
2.78795
10,315,164.972854
0.589284
97
0.913771
1.482459
0.641931
25.907286
0
164.269564
3.948987
8,022,800.236579
0.474727
98
0.71271
1.159818
0.656564
37.82323
0
214.403644
-9.640194
8,227,672.481897
0.619611
99
0.753946
1.017257
0.663001
38.435317
0
274.42573
0.70779
11,176,556.533499
0.79307
100
0.715715
1.459876
0.664311
14.892806
0
238.976752
1.201641
9,245,402.563215
0.690625
End of preview. Expand in Data Studio

Emmi-Wing Dataset

This repository contains the dataset proposed in Going with the Speed of Sound: Pushing Neural Surrogates into Highly-turbulent Transonic Regimes, presented at the Workshop on ML for the Physical Sciences at NeurIPS 2025.

Our dataset follows widely-used industrial standards:

  • OpenFOAM-v2506 used for simulations and mesh generation
  • Steady-state compressible solver (rhoSimpleFoam)
  • Body-fitted mesh using snappyHexMesh, y^+ values in the range [50 βˆ’ 200]
  • Spalart-Allmaras turbulence model with wall functions
  • Spatial discretization using second-order schemes for momentum, energy and pressure terms. First order used for turbulence quantities.

This repository contains the parameter scans that we used for evaluating our best surrogate model AB-UPT. In total there are 248 cases compressed in the all_scans.zip file which contains a directory for each case according to the following structure:

run_X
β”œβ”€β”€ design_parameters.pt
β”œβ”€β”€ surface_position.pt
β”œβ”€β”€ surface_pressure.pt 
β”œβ”€β”€ surface_wall_shear_stress.pt 
β”œβ”€β”€ volume_position.pt
β”œβ”€β”€ volume_pressure.pt
β”œβ”€β”€ volume_velocity.pt
β”œβ”€β”€ volume_vorticity.pt
β”œβ”€β”€ cell_areas.npy
β”œβ”€β”€ cell_centers.npy
β”œβ”€β”€ cell_normals.npy
└── wing.stl

The pytorch tensors contain the positions and field values for the respective fields and volume and surface quantities. The numpy files contain necessary information to compute drag and lift coefficients. Finally, the STL file contains the surface mesh of each wing. In addition we provide all design parameters including Mach and Reynolds number in the scan_per_case_design_parameters.csv for the evaluation scans and in the per_case_design_parameters.csv for the entire dataset. The full dataset can be downloaded at this link: https://data.emmi.ai/s/qTgKFQCRNnFTgXN

Data Quality

As mentioned in the paper, we used our best neural surrogate for quality control and were able to identify a bunch of cases that are affected by numerical artifacts. We provide a list of the potentially most severe cases in the erroneous_cases.npy file.

Please note that we attached this file to raise awareness, but they do not significantly impair the performance of neural surrogates trained on those cases. In fact, all surrogate models trained in the paper used this data during training and we found that the trained surrogates usually smooth out thos artifacts hence making them suitable as anomaly detectors. For more infos, please check out the paper.

Example usage

We provide a Github repository including basic scripts to illustrate dataloading and visualization to further facilitate training of neural surrogates on our data.

Citation

If you find our work useful or use our dataset, please consider citing it

@inproceedings{
    paischer2025going,
    title={Going with the Speed of Sound: Pushing Neural Surrogates into Transonic and Highly Turbulent Regimes},
    author={Anonymous},
    booktitle={Machine Learning and the Physical Sciences Workshop @ NeurIPS 2025},
    year={2025},
    url={https://openreview.net/forum?id=36Tpmdy1Cu}
    }
Downloads last month
66