Dataset Viewer
The dataset viewer is not available for this subset.
Cannot get the split names for the config 'default' of the dataset.
Exception:    SplitsNotFoundError
Message:      The split names could not be parsed from the dataset config.
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 289, in get_dataset_config_info
                  for split_generator in builder._split_generators(
                                         ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 91, in _split_generators
                  inferred_arrow_schema = pa.concat_tables(pa_tables, promote_options="default").schema
                                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 6319, in pyarrow.lib.concat_tables
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowTypeError: Unable to merge: Field npy has incompatible types: list<item: list<item: list<item: double>>> vs list<item: list<item: double>>: Unable to merge: Field item has incompatible types: list<item: list<item: double>> vs list<item: double>: Unable to merge: Field item has incompatible types: list<item: double> vs double
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
                  for split in get_dataset_split_names(
                               ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 343, in get_dataset_split_names
                  info = get_dataset_config_info(
                         ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 294, in get_dataset_config_info
                  raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
              datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

HAROOD: A Benchmark for Out-of-distribution Generalization in Sensor-based Human Activity Recognition

Paper | GitHub Repository

HAROOD is a modular and reproducible benchmark framework for studying generalization in sensor-based human activity recognition (HAR). It unifies preprocessing pipelines, standardizes four realistic OOD scenarios (cross-person, cross-position, cross-dataset, and cross-time), and implements 16 representative algorithms across CNN and Transformer architectures.

Key Features

  • 6 public HAR datasets unified under a single framework.
  • 5 realistic OOD scenarios: cross-person, cross-position, cross-dataset, cross-time, and cross-device.
  • 16 generalization algorithms spanning Data Manipulation, Representation Learning, and Learning Strategies.
  • Backbone support: Includes both CNN and Transformer-based architectures.
  • Standardized splits: Provides train/val/test model selection protocols.

Usage

The benchmark is designed to be modular. Below are examples of how to run experiments using the official implementation:

Run with a YAML config

from core import train
results = train(config='./config/experiment.yaml')

Run with a Python dict

from core import train
config_dict = {
    'algorithm': 'CORAL',
    'batch_size': 32,
}
results = train(config=config_dict)

Override parameters

from core import train
results = train(
    config='./config/experiment.yaml',
    lr=2e-3,
    max_epoch=200,
)

Supported Algorithms

The benchmark implements 16 algorithms across three main categories:

  • Data Manipulation: Mixup, DDLearn.
  • Representation Learning: ERM, DANN, CORAL, MMD, VREx, LAG.
  • Learning Strategy: MLDG, RSC, GroupDRO, ANDMask, Fish, Fishr, URM, ERM++.

Citation

If you use HAROOD in your research, please cite the following paper:

@inproceedings{lu2026harood,
  title={HAROOD: A Benchmark for Out-of-distribution Generalization in Sensor-based Human Activity Recognition},
  author={Lu, Wang and Zhu, Yao and Wang, Jindong},
  booktitle={The 32rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)},
  year={2026}
}
Downloads last month
8

Paper for AIFrontierLab/HAROODdata