The dataset viewer should be available soon. Please retry later.
RealPDEBench
RealPDEBench is a benchmark of paired real-world measurements and matched numerical simulations for complex physical systems. It is designed for spatiotemporal forecasting and sim-to-real transfer evaluation on real data.
This Hub repository (AI4Science-WestlakeU/RealPDEBench) is the release repo for RealPDEBench.
- Website & documentation: realpdebench.github.io
- Benchmark codebase: AI4Science-WestlakeU/RealPDEBench
Figure 1. RealPDEBench provides paired real-world measurements and matched numerical simulations for sim-to-real evaluation.
What makes RealPDEBench different?
- Paired real + simulated data: each scenario provides experimental measurements and corresponding CFD/LES simulations.
- Real-world evaluation: models are evaluated on real trajectories to quantify the sim-to-real gap.
- Multi-modal mismatch: simulations include additional unmeasured modalities (e.g., pressure, species fields), enabling modality-masking and transfer strategies.
Data sources (high level)
- Fluid systems (
cylinder,controlled_cylinder,fsi,foil):- Real: Particle Image Velocimetry (PIV) in a circulating water tunnel
- Sim: CFD (2D finite-volume + immersed-boundary; 3D GPU solvers depending on scenario)
- Combustion (
combustion):- Real: OH* chemiluminescence imaging (high-speed)
- Sim: Large Eddy Simulation (LES) with detailed chemistry (NH3/CH4/air co-firing)
Scenarios (5)
| Scenario | Real data (measured) | Numerical data (simulated) | Frames / trajectory | Spatial grid (after sub-sampling) | HDF5 trajectories (real / numerical) |
|---|---|---|---|---|---|
| cylinder | velocity (u,v) | (u,v,p) | 3990 | 64×128 | 92 / 92 |
| controlled_cylinder | (u,v) | (u,v,p) (+ control params in filenames) | 3990 | 64×128 | 96 / 96 |
| fsi | (u,v) | (u,v,p) | 2173 | 64×64 | 51 / 51 |
| foil | (u,v) | (u,v,p) | 3990 | 64×128 | 98 / 99 |
| combustion | OH* chemiluminescence intensity (1 channel) | intensity surrogate (1) + 15 simulated fields | 2001 | 128×128 | 30 / 30 |
Total trajectories (HDF5 files): ~735 (≈367 real + ≈368 numerical).
Physical parameter ranges (real experiments)
| Scenario | Key parameters (real) |
|---|---|
| cylinder | Reynolds number (Re): 1800–12000 |
| controlled_cylinder | (Re): 1781–9843; control frequency (f): 0.5–1.4 Hz |
| fsi | (Re): 3272–9068; mass ratio (m^*): 18.2–20.8 |
| foil | angle of attack (\alpha): 0°–20°; (Re): 2968–17031 |
| combustion | CH4 ratio: 20–100%; equivalence ratio (\phi): 0.75–1.3 |
Data format on the Hub
RealPDEBench stores complete trajectories in HuggingFace Arrow format, with separate JSON index files for train/val/test splits. This enables dynamic N_autoregressive support at runtime.
Each scenario contains:
- Trajectory data:
hf_dataset/{real,numerical}/— Arrow files with complete time series - Index files:
hf_dataset/{split}_index_{type}.json— maps sample indices to(sim_id, time_id) - test_mode metadata:
{in_dist,out_dist,remain}_params_{type}.json
Repository layout:
{repo_root}/
cylinder/
in_dist_test_params_real.json
out_dist_test_params_real.json
remain_params_real.json
in_dist_test_params_numerical.json
out_dist_test_params_numerical.json
remain_params_numerical.json
hf_dataset/
real/ # Arrow: complete trajectories (92 files)
data-*.arrow
dataset_info.json
state.json
numerical/ # Arrow: complete trajectories
data-*.arrow
dataset_info.json
state.json
train_index_real.json # Index: [{"sim_id": "xxx.h5", "time_id": 0}, ...]
val_index_real.json
test_index_real.json
train_index_numerical.json
val_index_numerical.json
test_index_numerical.json
fsi/
... (same structure)
controlled_cylinder/
... (same structure)
foil/
... (same structure)
combustion/
... (same structure)
How to download only what you need
For large data, use snapshot_download(..., allow_patterns=...) to avoid pulling the full repository.
import os
from huggingface_hub import snapshot_download
from datasets import load_from_disk
repo_id = "AI4Science-WestlakeU/RealPDEBench"
os.environ["HF_HUB_DISABLE_XET"] = "1"
local_dir = snapshot_download(
repo_id=repo_id,
repo_type="dataset",
allow_patterns=["fsi/**"], # example: download only the FSI folder
endpoint="https://hf-mirror.com",
)
# Load trajectory data
trajectories = load_from_disk(os.path.join(local_dir, "fsi", "hf_dataset", "real"))
print(f"Loaded {len(trajectories)} trajectories")
print(trajectories[0].keys()) # sim_id, u, v, shape_t, shape_h, shape_w
Using the RealPDEBench loaders (recommended)
For automatic train/val/test splitting and dynamic N_autoregressive support, use the provided dataset loaders:
from realpdebench.data.fluid_hf_dataset import FSIHFDataset
dataset = FSIHFDataset(
dataset_name="fsi",
dataset_root="/path/to/data",
dataset_type="real",
mode="test",
N_autoregressive=10, # Dynamic! Works with any value
)
input_tensor, output_tensor = dataset[0]
print(f"Input shape: {input_tensor.shape}") # (20, H, W, 2)
print(f"Output shape: {output_tensor.shape}") # (200, H, W, 2) = 20 × 10
Schema (columns)
Fluid datasets (cylinder, controlled_cylinder, fsi, foil)
- Keys (each row = one complete trajectory):
sim_id(string): trajectory file name (e.g.,10031.h5)u,v(bytes): float32 arrays of shape(T_full, H, W)— complete time seriesp(bytes): float32 array(T_full, H, W)(numerical splits only)shape_t(int): complete trajectory length (e.g., 3990, 2173)shape_h,shape_w(int): spatial dimensions
Combustion dataset (combustion)
- Keys (each row = one complete trajectory):
sim_id(string): e.g.,40NH3_1.1.h5observed(bytes): float32 array(T_full, H, W)— complete time seriesnumerical(bytes): float32 array(T_full, H, W, 15)(numerical splits only)numerical_channels(int): number of numerical channels (15)shape_t(int): complete trajectory length (e.g., 2001)shape_h,shape_w(int): spatial dimensions
Index files (JSON)
Each split has an index file mapping sample indices to trajectory positions:
[
{"sim_id": "10031.h5", "time_id": 0},
{"sim_id": "10031.h5", "time_id": 20},
{"sim_id": "10031.h5", "time_id": 40},
...
]
Data size
- Total: ~210GB across all scenarios
- Largest shard file: ~0.5GB (well below the Hub's recommended <50GB per file)
- Total file count: ~550 files (well below the Hub's recommended <100k files per repo)
Per-scenario totals:
| Scenario | real | numerical | Total |
|---|---|---|---|
| cylinder | 23GB | 34GB | 57GB |
| controlled_cylinder | 24GB | 36GB | 59GB |
| fsi | 6GB | 11GB | 17GB |
| foil | 24GB | 37GB | 61GB |
| combustion | 1GB | 15GB | 16GB |
| Total | 78GB | 133GB | ~210GB |
Recommended benchmark protocols
RealPDEBench supports three standard training paradigms (all evaluated on real-world data):
- Simulated training (numerical only)
- Real-world training (real only)
- Simulated pretraining + real finetuning
License
This dataset is released under CC BY‑NC 4.0 (non‑commercial). Please credit the authors and the benchmark paper when using the dataset.
Citation
If you find our work and/or our code useful, please cite us via:
@misc{hu2026realpdebenchbenchmarkcomplexphysical,
title={RealPDEBench: A Benchmark for Complex Physical Systems with Real-World Data},
author={Peiyan Hu and Haodong Feng and Hongyuan Liu and Tongtong Yan and Wenhao Deng and Tianrun Gao and Rong Zheng and Haoren Zheng and Chenglei Yu and Chuanrui Wang and Kaiwen Li and Zhi-Ming Ma and Dezhi Zhou and Xingcai Lu and Dixia Fan and Tailin Wu},
year={2026},
eprint={2601.01829},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2601.01829},
}
Contact
AI for Scientific Simulation and Discovery Lab, Westlake University
Maintainer: westlake-ai4s (Hugging Face)
Org: AI4Science-WestlakeU
- Downloads last month
- 563