ssc-ukv-mms-model-mix-adapt-max3
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5141
- Cer: 0.1363
- Wer: 0.4106
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 1
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|---|---|---|---|---|---|
| 0.6822 | 0.2658 | 200 | 0.5716 | 0.1403 | 0.4322 |
| 0.6465 | 0.5316 | 400 | 0.5555 | 0.1418 | 0.4355 |
| 0.5747 | 0.7973 | 600 | 0.5630 | 0.1435 | 0.4433 |
| 0.5695 | 1.0625 | 800 | 0.5537 | 0.1389 | 0.4249 |
| 0.6169 | 1.3282 | 1000 | 0.5466 | 0.1379 | 0.4226 |
| 0.5685 | 1.5940 | 1200 | 0.5460 | 0.1372 | 0.4251 |
| 0.5769 | 1.8598 | 1400 | 0.5383 | 0.1392 | 0.4256 |
| 0.5182 | 2.1249 | 1600 | 0.5377 | 0.1432 | 0.4421 |
| 0.5024 | 2.3907 | 1800 | 0.5388 | 0.1361 | 0.4141 |
| 0.6555 | 2.6565 | 2000 | 0.5215 | 0.1360 | 0.4102 |
| 0.5461 | 2.9223 | 2200 | 0.5273 | 0.1377 | 0.4206 |
| 0.5068 | 3.1874 | 2400 | 0.5226 | 0.1383 | 0.4203 |
| 0.4841 | 3.4532 | 2600 | 0.5215 | 0.1380 | 0.4206 |
| 0.5686 | 3.7189 | 2800 | 0.5197 | 0.1356 | 0.4119 |
| 0.5362 | 3.9847 | 3000 | 0.5163 | 0.1367 | 0.4143 |
| 0.5292 | 4.2498 | 3200 | 0.5170 | 0.1358 | 0.4120 |
| 0.5426 | 4.5156 | 3400 | 0.5149 | 0.1371 | 0.4145 |
| 0.5364 | 4.7814 | 3600 | 0.5141 | 0.1363 | 0.4106 |
Framework versions
- Transformers 4.52.1
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 17