ssc-tob-mms-model-mix-adapt-max3-devtrain

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5396
  • Cer: 0.1428
  • Wer: 0.5054

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 1
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
0.4589 0.4790 200 0.5644 0.1487 0.5264
0.4627 0.9581 400 0.5576 0.1511 0.5290
0.4115 1.4359 600 0.5575 0.1486 0.5286
0.4016 1.9150 800 0.5574 0.1452 0.5104
0.3951 2.3928 1000 0.5513 0.1481 0.5255
0.3718 2.8719 1200 0.5554 0.1475 0.5209
0.4085 3.3497 1400 0.5542 0.1454 0.5173
0.346 3.8287 1600 0.5608 0.1440 0.5089
0.3517 4.3066 1800 0.5445 0.1430 0.5072
0.34 4.7856 2000 0.5396 0.1428 0.5054

Framework versions

  • Transformers 4.52.1
  • Pytorch 2.9.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
24
Safetensors
Model size
1.0B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results