ssc-qxp-mms-model-mix-adapt-max2-2
This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1861
- Cer: 0.0659
- Wer: 0.4357
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 40
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|---|---|---|---|---|---|
| 0.4108 | 0.6920 | 200 | 0.2210 | 0.0866 | 0.4945 |
| 0.3256 | 1.3841 | 400 | 0.2106 | 0.0747 | 0.4871 |
| 0.2829 | 2.0761 | 600 | 0.2341 | 0.0807 | 0.4724 |
| 0.2923 | 2.7682 | 800 | 0.2036 | 0.0821 | 0.4945 |
| 0.2777 | 3.4602 | 1000 | 0.1919 | 0.0780 | 0.4605 |
| 0.2478 | 4.1522 | 1200 | 0.1868 | 0.0778 | 0.4632 |
| 0.2623 | 4.8443 | 1400 | 0.1855 | 0.0787 | 0.4752 |
| 0.2484 | 5.5363 | 1600 | 0.1914 | 0.0799 | 0.4614 |
| 0.2606 | 6.2284 | 1800 | 0.1915 | 0.0767 | 0.4568 |
| 0.2305 | 6.9204 | 2000 | 0.1988 | 0.0762 | 0.4494 |
| 0.241 | 7.6125 | 2200 | 0.1721 | 0.0720 | 0.4522 |
| 0.2391 | 8.3045 | 2400 | 0.1762 | 0.0734 | 0.4586 |
| 0.2325 | 8.9965 | 2600 | 0.1976 | 0.0773 | 0.4743 |
| 0.2331 | 9.6886 | 2800 | 0.1669 | 0.0714 | 0.4559 |
| 0.2207 | 10.3806 | 3000 | 0.1715 | 0.0695 | 0.4559 |
| 0.2224 | 11.0727 | 3200 | 0.1894 | 0.0754 | 0.4577 |
| 0.2192 | 11.7647 | 3400 | 0.1825 | 0.0720 | 0.4485 |
| 0.2228 | 12.4567 | 3600 | 0.1693 | 0.0699 | 0.4623 |
| 0.2124 | 13.1488 | 3800 | 0.1792 | 0.0724 | 0.4467 |
| 0.2053 | 13.8408 | 4000 | 0.1761 | 0.0714 | 0.4393 |
| 0.2033 | 14.5329 | 4200 | 0.1944 | 0.0778 | 0.4614 |
| 0.2269 | 15.2249 | 4400 | 0.1742 | 0.0640 | 0.4458 |
| 0.1965 | 15.9170 | 4600 | 0.1768 | 0.0700 | 0.4522 |
| 0.1999 | 16.6090 | 4800 | 0.1735 | 0.0695 | 0.4485 |
| 0.1927 | 17.3010 | 5000 | 0.1713 | 0.0687 | 0.4430 |
| 0.1917 | 17.9931 | 5200 | 0.1709 | 0.0709 | 0.4577 |
| 0.1969 | 18.6851 | 5400 | 0.1686 | 0.0669 | 0.4458 |
| 0.1921 | 19.3772 | 5600 | 0.1672 | 0.0655 | 0.4449 |
| 0.2096 | 20.0692 | 5800 | 0.1699 | 0.0685 | 0.4439 |
| 0.1892 | 20.7612 | 6000 | 0.1789 | 0.0706 | 0.4430 |
| 0.1869 | 21.4533 | 6200 | 0.1807 | 0.0699 | 0.4449 |
| 0.191 | 22.1453 | 6400 | 0.1836 | 0.0685 | 0.4338 |
| 0.1781 | 22.8374 | 6600 | 0.1728 | 0.0683 | 0.4531 |
| 0.1793 | 23.5294 | 6800 | 0.1720 | 0.0660 | 0.4412 |
| 0.1922 | 24.2215 | 7000 | 0.1733 | 0.0611 | 0.4531 |
| 0.1761 | 24.9135 | 7200 | 0.1786 | 0.0695 | 0.4467 |
| 0.1774 | 25.6055 | 7400 | 0.1815 | 0.0676 | 0.4283 |
| 0.1681 | 26.2976 | 7600 | 0.1750 | 0.0668 | 0.4430 |
| 0.1638 | 26.9896 | 7800 | 0.1773 | 0.0685 | 0.4347 |
| 0.1596 | 27.6817 | 8000 | 0.1793 | 0.0677 | 0.4338 |
| 0.1577 | 28.3737 | 8200 | 0.1698 | 0.0632 | 0.4476 |
| 0.1712 | 29.0657 | 8400 | 0.1772 | 0.0680 | 0.4384 |
| 0.1667 | 29.7578 | 8600 | 0.1768 | 0.0660 | 0.4421 |
| 0.164 | 30.4498 | 8800 | 0.1777 | 0.0657 | 0.4366 |
| 0.1464 | 31.1419 | 9000 | 0.1792 | 0.0660 | 0.4384 |
| 0.158 | 31.8339 | 9200 | 0.1818 | 0.0664 | 0.4329 |
| 0.1527 | 32.5260 | 9400 | 0.1766 | 0.0656 | 0.4412 |
| 0.1664 | 33.2180 | 9600 | 0.1827 | 0.0660 | 0.4366 |
| 0.1428 | 33.9100 | 9800 | 0.1816 | 0.0649 | 0.4430 |
| 0.1546 | 34.6021 | 10000 | 0.1811 | 0.0665 | 0.4439 |
| 0.1442 | 35.2941 | 10200 | 0.1858 | 0.0665 | 0.4347 |
| 0.1449 | 35.9862 | 10400 | 0.1877 | 0.0663 | 0.4347 |
| 0.1409 | 36.6782 | 10600 | 0.1814 | 0.0654 | 0.4347 |
| 0.1464 | 37.3702 | 10800 | 0.1886 | 0.0669 | 0.4329 |
| 0.1516 | 38.0623 | 11000 | 0.1848 | 0.0660 | 0.4393 |
| 0.1503 | 38.7543 | 11200 | 0.1843 | 0.0664 | 0.4338 |
| 0.1468 | 39.4464 | 11400 | 0.1861 | 0.0659 | 0.4357 |
Framework versions
- Transformers 4.52.1
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 12
Model tree for ctaguchi/ssc-qxp-mms-model-mix-adapt-max2-2
Base model
facebook/mms-1b-all