ssc-qxp-mms-model-mix-adapt-max
This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1612
- Cer: 0.0900
- Wer: 0.5028
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|---|---|---|---|---|---|
| 0.215 | 0.9975 | 200 | 0.1886 | 0.1071 | 0.5928 |
| 0.1815 | 1.9925 | 400 | 0.1718 | 0.1030 | 0.5625 |
| 0.1654 | 2.9875 | 600 | 0.1648 | 0.1021 | 0.5597 |
| 0.1564 | 3.9825 | 800 | 0.1603 | 0.1003 | 0.5478 |
| 0.146 | 4.9776 | 1000 | 0.1513 | 0.0957 | 0.5358 |
| 0.1375 | 5.9726 | 1200 | 0.1558 | 0.1001 | 0.5478 |
| 0.139 | 6.9676 | 1400 | 0.1593 | 0.0994 | 0.5368 |
| 0.1266 | 7.9626 | 1600 | 0.1467 | 0.0952 | 0.5322 |
| 0.1267 | 8.9576 | 1800 | 0.1552 | 0.0971 | 0.5432 |
| 0.1254 | 9.9526 | 2000 | 0.1536 | 0.0982 | 0.5377 |
| 0.1169 | 10.9476 | 2200 | 0.1497 | 0.0930 | 0.5193 |
| 0.115 | 11.9426 | 2400 | 0.1527 | 0.0965 | 0.5303 |
| 0.116 | 12.9377 | 2600 | 0.1505 | 0.0953 | 0.5239 |
| 0.1096 | 13.9327 | 2800 | 0.1560 | 0.0960 | 0.5303 |
| 0.1051 | 14.9277 | 3000 | 0.1599 | 0.0976 | 0.5340 |
| 0.1016 | 15.9227 | 3200 | 0.1541 | 0.0941 | 0.5156 |
| 0.0958 | 16.9177 | 3400 | 0.1592 | 0.0956 | 0.5303 |
| 0.0894 | 17.9127 | 3600 | 0.1573 | 0.0950 | 0.5211 |
| 0.0838 | 18.9077 | 3800 | 0.1567 | 0.0939 | 0.5257 |
| 0.0836 | 19.9027 | 4000 | 0.1631 | 0.0943 | 0.5175 |
| 0.0803 | 20.8978 | 4200 | 0.1612 | 0.0927 | 0.5156 |
| 0.0761 | 21.8928 | 4400 | 0.1526 | 0.0883 | 0.5037 |
| 0.0753 | 22.8878 | 4600 | 0.1589 | 0.0931 | 0.5184 |
| 0.0724 | 23.8828 | 4800 | 0.1597 | 0.0928 | 0.5129 |
| 0.0689 | 24.8778 | 5000 | 0.1622 | 0.0918 | 0.5101 |
| 0.0644 | 25.8728 | 5200 | 0.1620 | 0.0907 | 0.5055 |
| 0.066 | 26.8678 | 5400 | 0.1591 | 0.0888 | 0.5 |
| 0.0663 | 27.8628 | 5600 | 0.1590 | 0.0873 | 0.5 |
| 0.0659 | 28.8579 | 5800 | 0.1600 | 0.0894 | 0.5037 |
| 0.0615 | 29.8529 | 6000 | 0.1612 | 0.0900 | 0.5028 |
Framework versions
- Transformers 4.57.2
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.22.0
- Downloads last month
- -
Model tree for ctaguchi/ssc-qxp-mms-model-mix-adapt-max
Base model
facebook/mms-1b-all