ssc-lth-mms-model-mix-adapt-max2

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8766
  • Cer: 0.1753
  • Wer: 0.4441

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 1
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
0.5128 0.2797 200 0.9431 0.1827 0.4718
0.4979 0.5594 400 0.8099 0.1812 0.4844
0.5554 0.8392 600 0.8049 0.2087 0.5610
0.4722 1.1189 800 0.8562 0.1775 0.4526
0.5403 1.3986 1000 0.8627 0.1826 0.4838
0.495 1.6783 1200 0.8026 0.1833 0.4760
0.483 1.9580 1400 0.8246 0.1772 0.4462
0.4352 2.2378 1600 0.8419 0.1840 0.4835
0.4607 2.5175 1800 0.8474 0.1866 0.4852
0.4196 2.7972 2000 0.8585 0.1802 0.4598
0.3951 3.0769 2200 0.8591 0.1767 0.4574
0.3843 3.3566 2400 0.9117 0.1741 0.4386
0.3912 3.6364 2600 0.8538 0.1806 0.4622
0.4295 3.9161 2800 0.8342 0.1818 0.4665
0.3643 4.1958 3000 0.8846 0.1752 0.4421
0.3686 4.4755 3200 0.8553 0.1791 0.4555
0.3295 4.7552 3400 0.8766 0.1753 0.4441

Framework versions

  • Transformers 4.52.1
  • Pytorch 2.9.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
19
Safetensors
Model size
1.0B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results