ssc-lth-mms-model-mix-adapt-max2
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8766
- Cer: 0.1753
- Wer: 0.4441
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|---|---|---|---|---|---|
| 0.5128 | 0.2797 | 200 | 0.9431 | 0.1827 | 0.4718 |
| 0.4979 | 0.5594 | 400 | 0.8099 | 0.1812 | 0.4844 |
| 0.5554 | 0.8392 | 600 | 0.8049 | 0.2087 | 0.5610 |
| 0.4722 | 1.1189 | 800 | 0.8562 | 0.1775 | 0.4526 |
| 0.5403 | 1.3986 | 1000 | 0.8627 | 0.1826 | 0.4838 |
| 0.495 | 1.6783 | 1200 | 0.8026 | 0.1833 | 0.4760 |
| 0.483 | 1.9580 | 1400 | 0.8246 | 0.1772 | 0.4462 |
| 0.4352 | 2.2378 | 1600 | 0.8419 | 0.1840 | 0.4835 |
| 0.4607 | 2.5175 | 1800 | 0.8474 | 0.1866 | 0.4852 |
| 0.4196 | 2.7972 | 2000 | 0.8585 | 0.1802 | 0.4598 |
| 0.3951 | 3.0769 | 2200 | 0.8591 | 0.1767 | 0.4574 |
| 0.3843 | 3.3566 | 2400 | 0.9117 | 0.1741 | 0.4386 |
| 0.3912 | 3.6364 | 2600 | 0.8538 | 0.1806 | 0.4622 |
| 0.4295 | 3.9161 | 2800 | 0.8342 | 0.1818 | 0.4665 |
| 0.3643 | 4.1958 | 3000 | 0.8846 | 0.1752 | 0.4421 |
| 0.3686 | 4.4755 | 3200 | 0.8553 | 0.1791 | 0.4555 |
| 0.3295 | 4.7552 | 3400 | 0.8766 | 0.1753 | 0.4441 |
Framework versions
- Transformers 4.52.1
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 19