ssc-kcn-mms-model-mix-adapt-max2
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2481
- Cer: 0.2259
- Wer: 0.6023
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|---|---|---|---|---|---|
| 0.7154 | 0.2867 | 200 | 1.4738 | 0.2442 | 0.6568 |
| 0.7838 | 0.5735 | 400 | 1.3383 | 0.2400 | 0.6444 |
| 0.7534 | 0.8602 | 600 | 1.2946 | 0.2444 | 0.6554 |
| 0.6464 | 1.1462 | 800 | 1.3231 | 0.2405 | 0.6334 |
| 0.7603 | 1.4330 | 1000 | 1.3405 | 0.2345 | 0.6292 |
| 0.6674 | 1.7197 | 1200 | 1.2813 | 0.2504 | 0.6588 |
| 0.7497 | 2.0057 | 1400 | 1.3092 | 0.2377 | 0.6273 |
| 0.6966 | 2.2925 | 1600 | 1.3685 | 0.2337 | 0.6314 |
| 0.6051 | 2.5792 | 1800 | 1.3544 | 0.2321 | 0.6226 |
| 0.6721 | 2.8659 | 2000 | 1.2602 | 0.2369 | 0.6279 |
| 0.6449 | 3.1520 | 2200 | 1.3395 | 0.2324 | 0.6207 |
| 0.6078 | 3.4387 | 2400 | 1.3105 | 0.2283 | 0.6091 |
| 0.5649 | 3.7254 | 2600 | 1.3237 | 0.2266 | 0.6042 |
| 0.581 | 4.0115 | 2800 | 1.2204 | 0.2252 | 0.6 |
| 0.6143 | 4.2982 | 3000 | 1.2506 | 0.2266 | 0.6047 |
| 0.6088 | 4.5849 | 3200 | 1.2199 | 0.2270 | 0.5986 |
| 0.5187 | 4.8717 | 3400 | 1.2481 | 0.2259 | 0.6023 |
Framework versions
- Transformers 4.52.1
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 17