ssc-kbd-mms-model-mix-adapt-max3
This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2958
- Cer: 0.1016
- Wer: 0.5602
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|---|---|---|---|---|---|
| 3.5251 | 0.1674 | 200 | 3.3282 | 0.9409 | 0.9997 |
| 3.3827 | 0.3347 | 400 | 3.2021 | 0.8943 | 0.9989 |
| 3.2375 | 0.5021 | 600 | 3.0549 | 0.8991 | 0.9992 |
| 3.0856 | 0.6695 | 800 | 2.9390 | 0.8932 | 0.9997 |
| 2.8165 | 0.8368 | 1000 | 2.6709 | 0.8018 | 0.9985 |
| 2.5668 | 1.0042 | 1200 | 2.3290 | 0.6999 | 0.9928 |
| 2.2592 | 1.1715 | 1400 | 2.1523 | 0.6312 | 0.9837 |
| 2.0947 | 1.3389 | 1600 | 1.9143 | 0.5989 | 0.9787 |
| 1.9453 | 1.5063 | 1800 | 1.7976 | 0.5524 | 0.9730 |
| 0.8778 | 1.6736 | 2000 | 0.6186 | 0.1867 | 0.8573 |
| 0.5716 | 1.8410 | 2200 | 0.5031 | 0.1593 | 0.7850 |
| 0.5111 | 2.0084 | 2400 | 0.4497 | 0.1460 | 0.7329 |
| 0.4645 | 2.1757 | 2600 | 0.4273 | 0.1395 | 0.7253 |
| 0.4543 | 2.3431 | 2800 | 0.4175 | 0.1366 | 0.6998 |
| 0.4452 | 2.5105 | 3000 | 0.4014 | 0.1338 | 0.6871 |
| 0.4193 | 2.6778 | 3200 | 0.3840 | 0.1283 | 0.6676 |
| 0.419 | 2.8452 | 3400 | 0.3942 | 0.1275 | 0.6631 |
| 0.4125 | 3.0126 | 3600 | 0.3751 | 0.1254 | 0.6516 |
| 0.3857 | 3.1799 | 3800 | 0.3679 | 0.1225 | 0.6468 |
| 0.3897 | 3.3473 | 4000 | 0.3621 | 0.1208 | 0.6416 |
| 0.3852 | 3.5146 | 4200 | 0.3569 | 0.1187 | 0.6344 |
| 0.3851 | 3.6820 | 4400 | 0.3523 | 0.1196 | 0.6327 |
| 0.3725 | 3.8494 | 4600 | 0.3527 | 0.1177 | 0.6281 |
| 0.3758 | 4.0167 | 4800 | 0.3484 | 0.1163 | 0.6204 |
| 0.3731 | 4.1841 | 5000 | 0.3421 | 0.1149 | 0.6165 |
| 0.3541 | 4.3515 | 5200 | 0.3459 | 0.1144 | 0.6159 |
| 0.3667 | 4.5188 | 5400 | 0.3408 | 0.1152 | 0.6143 |
| 0.3572 | 4.6862 | 5600 | 0.3383 | 0.1139 | 0.6113 |
| 0.3479 | 4.8536 | 5800 | 0.3350 | 0.1126 | 0.6037 |
| 0.3389 | 5.0209 | 6000 | 0.3388 | 0.1147 | 0.6159 |
| 0.328 | 5.1883 | 6200 | 0.3267 | 0.1125 | 0.6091 |
| 0.3479 | 5.3556 | 6400 | 0.3227 | 0.1105 | 0.6052 |
| 0.3303 | 5.5230 | 6600 | 0.3223 | 0.1103 | 0.5937 |
| 0.3172 | 5.6904 | 6800 | 0.3212 | 0.1103 | 0.6014 |
| 0.3377 | 5.8577 | 7000 | 0.3185 | 0.1095 | 0.5939 |
| 0.3332 | 6.0251 | 7200 | 0.3209 | 0.1082 | 0.5910 |
| 0.3079 | 6.1925 | 7400 | 0.3182 | 0.1090 | 0.5945 |
| 0.3116 | 6.3598 | 7600 | 0.3185 | 0.1080 | 0.5888 |
| 0.3055 | 6.5272 | 7800 | 0.3128 | 0.1067 | 0.5841 |
| 0.3173 | 6.6946 | 8000 | 0.3119 | 0.1072 | 0.5832 |
| 0.3069 | 6.8619 | 8200 | 0.3124 | 0.1064 | 0.5812 |
| 0.3038 | 7.0293 | 8400 | 0.3075 | 0.1062 | 0.5824 |
| 0.3026 | 7.1967 | 8600 | 0.3093 | 0.1060 | 0.5779 |
| 0.2994 | 7.3640 | 8800 | 0.3090 | 0.1057 | 0.5748 |
| 0.2989 | 7.5314 | 9000 | 0.3103 | 0.1057 | 0.5722 |
| 0.3029 | 7.6987 | 9200 | 0.3040 | 0.1054 | 0.5748 |
| 0.3088 | 7.8661 | 9400 | 0.3050 | 0.1043 | 0.5733 |
| 0.2985 | 8.0335 | 9600 | 0.3044 | 0.1047 | 0.5726 |
| 0.2932 | 8.2008 | 9800 | 0.3035 | 0.1031 | 0.5675 |
| 0.2872 | 8.3682 | 10000 | 0.3027 | 0.1041 | 0.5722 |
| 0.2841 | 8.5356 | 10200 | 0.2985 | 0.1029 | 0.5701 |
| 0.2946 | 8.7029 | 10400 | 0.2998 | 0.1028 | 0.5669 |
| 0.2905 | 8.8703 | 10600 | 0.2976 | 0.1031 | 0.5682 |
| 0.2862 | 9.0377 | 10800 | 0.2977 | 0.1023 | 0.5645 |
| 0.2838 | 9.2050 | 11000 | 0.2986 | 0.1031 | 0.5662 |
| 0.2794 | 9.3724 | 11200 | 0.2969 | 0.1023 | 0.5627 |
| 0.278 | 9.5397 | 11400 | 0.2975 | 0.1023 | 0.5654 |
| 0.2926 | 9.7071 | 11600 | 0.2955 | 0.1021 | 0.5630 |
| 0.2769 | 9.8745 | 11800 | 0.2958 | 0.1016 | 0.5602 |
Framework versions
- Transformers 4.52.1
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 13
Model tree for ctaguchi/ssc-kbd-mms-model-mix-adapt-max3
Base model
facebook/mms-1b-all