ssc-kbd-mms-model-mix-adapt-max
This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2593
- Cer: 0.1091
- Wer: 0.5604
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|---|---|---|---|---|---|
| 0.6422 | 0.1719 | 200 | 0.4864 | 0.1765 | 0.8201 |
| 0.4943 | 0.3438 | 400 | 0.4324 | 0.1614 | 0.7674 |
| 0.4538 | 0.5157 | 600 | 0.4279 | 0.1583 | 0.7394 |
| 0.4292 | 0.6876 | 800 | 0.3844 | 0.1462 | 0.7058 |
| 0.4018 | 0.8595 | 1000 | 0.3818 | 0.1411 | 0.6929 |
| 0.3847 | 1.0309 | 1200 | 0.3429 | 0.1346 | 0.6741 |
| 0.3785 | 1.2028 | 1400 | 0.3468 | 0.1368 | 0.6722 |
| 0.3708 | 1.3747 | 1600 | 0.3546 | 0.1335 | 0.6683 |
| 0.3698 | 1.5466 | 1800 | 0.3337 | 0.1320 | 0.6632 |
| 0.3535 | 1.7185 | 2000 | 0.3305 | 0.1304 | 0.6569 |
| 0.3683 | 1.8904 | 2200 | 0.3305 | 0.1285 | 0.6456 |
| 0.3584 | 2.0619 | 2400 | 0.3263 | 0.1284 | 0.6398 |
| 0.3425 | 2.2338 | 2600 | 0.3225 | 0.1300 | 0.6453 |
| 0.354 | 2.4057 | 2800 | 0.3208 | 0.1279 | 0.6361 |
| 0.3379 | 2.5776 | 3000 | 0.3130 | 0.1256 | 0.6274 |
| 0.3367 | 2.7495 | 3200 | 0.3156 | 0.1258 | 0.6284 |
| 0.341 | 2.9214 | 3400 | 0.3143 | 0.1258 | 0.6303 |
| 0.3171 | 3.0928 | 3600 | 0.3143 | 0.1253 | 0.6394 |
| 0.3106 | 3.2647 | 3800 | 0.3111 | 0.1225 | 0.6183 |
| 0.3194 | 3.4366 | 4000 | 0.3053 | 0.1238 | 0.6266 |
| 0.3058 | 3.6085 | 4200 | 0.3048 | 0.1235 | 0.6284 |
| 0.3188 | 3.7804 | 4400 | 0.3045 | 0.1219 | 0.6193 |
| 0.3117 | 3.9523 | 4600 | 0.2981 | 0.1207 | 0.6137 |
| 0.2962 | 4.1238 | 4800 | 0.2977 | 0.1204 | 0.6132 |
| 0.3019 | 4.2957 | 5000 | 0.2946 | 0.1190 | 0.6037 |
| 0.2972 | 4.4676 | 5200 | 0.3031 | 0.1195 | 0.6071 |
| 0.2879 | 4.6394 | 5400 | 0.2928 | 0.1188 | 0.6014 |
| 0.2934 | 4.8113 | 5600 | 0.2938 | 0.1174 | 0.5984 |
| 0.2932 | 4.9832 | 5800 | 0.2909 | 0.1183 | 0.6051 |
| 0.2884 | 5.1547 | 6000 | 0.2854 | 0.1160 | 0.5833 |
| 0.2864 | 5.3266 | 6200 | 0.2844 | 0.1158 | 0.5821 |
| 0.2837 | 5.4985 | 6400 | 0.2810 | 0.1159 | 0.5901 |
| 0.2779 | 5.6704 | 6600 | 0.2746 | 0.1139 | 0.5786 |
| 0.2739 | 5.8423 | 6800 | 0.2774 | 0.1147 | 0.5782 |
| 0.2754 | 6.0138 | 7000 | 0.2750 | 0.1132 | 0.5745 |
| 0.27 | 6.1856 | 7200 | 0.2792 | 0.1134 | 0.5756 |
| 0.2602 | 6.3575 | 7400 | 0.2775 | 0.1145 | 0.5790 |
| 0.2611 | 6.5294 | 7600 | 0.2765 | 0.1140 | 0.5781 |
| 0.2605 | 6.7013 | 7800 | 0.2790 | 0.1135 | 0.5782 |
| 0.2611 | 6.8732 | 8000 | 0.2741 | 0.1124 | 0.5714 |
| 0.2637 | 7.0447 | 8200 | 0.2753 | 0.1126 | 0.5691 |
| 0.251 | 7.2166 | 8400 | 0.2689 | 0.1123 | 0.5744 |
| 0.2562 | 7.3885 | 8600 | 0.2690 | 0.1116 | 0.5686 |
| 0.2608 | 7.5604 | 8800 | 0.2667 | 0.1125 | 0.5744 |
| 0.255 | 7.7323 | 9000 | 0.2708 | 0.1124 | 0.5762 |
| 0.2466 | 7.9042 | 9200 | 0.2657 | 0.1113 | 0.5713 |
| 0.2331 | 8.0756 | 9400 | 0.2656 | 0.1110 | 0.5666 |
| 0.2358 | 8.2475 | 9600 | 0.2670 | 0.1100 | 0.5675 |
| 0.2447 | 8.4194 | 9800 | 0.2654 | 0.1108 | 0.5663 |
| 0.2438 | 8.5913 | 10000 | 0.2630 | 0.1096 | 0.5620 |
| 0.2311 | 8.7632 | 10200 | 0.2601 | 0.1087 | 0.5590 |
| 0.2429 | 8.9351 | 10400 | 0.2602 | 0.1095 | 0.5612 |
| 0.2351 | 9.1066 | 10600 | 0.2602 | 0.1105 | 0.5666 |
| 0.2293 | 9.2785 | 10800 | 0.2593 | 0.1094 | 0.5614 |
| 0.2342 | 9.4504 | 11000 | 0.2586 | 0.1092 | 0.5588 |
| 0.2325 | 9.6223 | 11200 | 0.2598 | 0.1090 | 0.5595 |
| 0.2327 | 9.7942 | 11400 | 0.2598 | 0.1092 | 0.5612 |
| 0.2289 | 9.9661 | 11600 | 0.2593 | 0.1091 | 0.5604 |
Framework versions
- Transformers 4.57.2
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.22.0
- Downloads last month
- -
Model tree for ctaguchi/ssc-kbd-mms-model-mix-adapt-max
Base model
facebook/mms-1b-all