ssc-kbd-mms-model
This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2559
- Cer: 0.0920
- Wer: 0.5172
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|---|---|---|---|---|---|
| 0.8242 | 0.1719 | 200 | 0.6052 | 0.1907 | 0.8410 |
| 0.5396 | 0.3438 | 400 | 0.4636 | 0.1535 | 0.7533 |
| 0.4706 | 0.5157 | 600 | 0.4237 | 0.1411 | 0.6953 |
| 0.4313 | 0.6876 | 800 | 0.3889 | 0.1342 | 0.6967 |
| 0.399 | 0.8595 | 1000 | 0.3817 | 0.1263 | 0.6548 |
| 0.3835 | 1.0309 | 1200 | 0.3536 | 0.1204 | 0.6379 |
| 0.4002 | 1.2028 | 1400 | 0.3461 | 0.1178 | 0.6223 |
| 0.3667 | 1.3747 | 1600 | 0.3403 | 0.1168 | 0.6230 |
| 0.3641 | 1.5466 | 1800 | 0.3356 | 0.1158 | 0.6277 |
| 0.3461 | 1.7185 | 2000 | 0.3271 | 0.1127 | 0.6118 |
| 0.3539 | 1.8904 | 2200 | 0.3223 | 0.1109 | 0.6007 |
| 0.3404 | 2.0619 | 2400 | 0.3188 | 0.1093 | 0.5941 |
| 0.3285 | 2.2338 | 2600 | 0.3115 | 0.1083 | 0.5927 |
| 0.3332 | 2.4057 | 2800 | 0.3093 | 0.1075 | 0.5888 |
| 0.3276 | 2.5776 | 3000 | 0.3062 | 0.1047 | 0.5783 |
| 0.3274 | 2.7495 | 3200 | 0.3033 | 0.1045 | 0.5749 |
| 0.3137 | 2.9214 | 3400 | 0.2981 | 0.1042 | 0.5717 |
| 0.3095 | 3.0928 | 3600 | 0.3001 | 0.1050 | 0.5807 |
| 0.3146 | 3.2647 | 3800 | 0.3041 | 0.1058 | 0.5788 |
| 0.3147 | 3.4366 | 4000 | 0.2922 | 0.1039 | 0.5865 |
| 0.2873 | 3.6085 | 4200 | 0.2905 | 0.1013 | 0.5628 |
| 0.2973 | 3.7804 | 4400 | 0.2887 | 0.1014 | 0.5590 |
| 0.3028 | 3.9523 | 4600 | 0.2853 | 0.1011 | 0.5583 |
| 0.2747 | 4.1238 | 4800 | 0.2881 | 0.0983 | 0.5490 |
| 0.2928 | 4.2957 | 5000 | 0.2897 | 0.1000 | 0.5556 |
| 0.2825 | 4.4676 | 5200 | 0.2872 | 0.0982 | 0.5492 |
| 0.2861 | 4.6394 | 5400 | 0.2820 | 0.0990 | 0.5535 |
| 0.277 | 4.8113 | 5600 | 0.2831 | 0.0986 | 0.5509 |
| 0.2827 | 4.9832 | 5800 | 0.2805 | 0.0970 | 0.5434 |
| 0.2695 | 5.1547 | 6000 | 0.2758 | 0.0970 | 0.5455 |
| 0.2696 | 5.3266 | 6200 | 0.2748 | 0.0962 | 0.5396 |
| 0.2834 | 5.4985 | 6400 | 0.2716 | 0.0966 | 0.5408 |
| 0.2786 | 5.6704 | 6600 | 0.2786 | 0.0970 | 0.5362 |
| 0.2741 | 5.8423 | 6800 | 0.2693 | 0.0948 | 0.5315 |
| 0.2816 | 6.0138 | 7000 | 0.2697 | 0.0952 | 0.5330 |
| 0.2587 | 6.1856 | 7200 | 0.2682 | 0.0951 | 0.5347 |
| 0.2703 | 6.3575 | 7400 | 0.2666 | 0.0940 | 0.5304 |
| 0.2503 | 6.5294 | 7600 | 0.2671 | 0.0949 | 0.5327 |
| 0.2656 | 6.7013 | 7800 | 0.2654 | 0.0944 | 0.5284 |
| 0.2565 | 6.8732 | 8000 | 0.2668 | 0.0935 | 0.5246 |
| 0.2518 | 7.0447 | 8200 | 0.2683 | 0.0932 | 0.5262 |
| 0.2477 | 7.2166 | 8400 | 0.2666 | 0.0930 | 0.5281 |
| 0.2575 | 7.3885 | 8600 | 0.2632 | 0.0932 | 0.5227 |
| 0.2523 | 7.5604 | 8800 | 0.2640 | 0.0932 | 0.5242 |
| 0.2383 | 7.7323 | 9000 | 0.2622 | 0.0928 | 0.5207 |
| 0.2366 | 7.9042 | 9200 | 0.2629 | 0.0931 | 0.5230 |
| 0.2381 | 8.0756 | 9400 | 0.2606 | 0.0926 | 0.5198 |
| 0.24 | 8.2475 | 9600 | 0.2609 | 0.0921 | 0.5171 |
| 0.2408 | 8.4194 | 9800 | 0.2590 | 0.0923 | 0.5185 |
| 0.2443 | 8.5913 | 10000 | 0.2575 | 0.0916 | 0.5171 |
| 0.251 | 8.7632 | 10200 | 0.2579 | 0.0919 | 0.5160 |
| 0.2418 | 8.9351 | 10400 | 0.2578 | 0.0915 | 0.5156 |
| 0.2382 | 9.1066 | 10600 | 0.2570 | 0.0912 | 0.5142 |
| 0.2342 | 9.2785 | 10800 | 0.2560 | 0.0915 | 0.5159 |
| 0.2297 | 9.4504 | 11000 | 0.2568 | 0.0917 | 0.5146 |
| 0.2365 | 9.6223 | 11200 | 0.2557 | 0.0917 | 0.5163 |
| 0.2275 | 9.7942 | 11400 | 0.2565 | 0.0918 | 0.5172 |
| 0.2436 | 9.9661 | 11600 | 0.2559 | 0.0920 | 0.5172 |
Framework versions
- Transformers 4.57.2
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.22.0
- Downloads last month
- -
Model tree for ctaguchi/ssc-kbd-mms-model
Base model
facebook/mms-1b-all