ssc-cgg-mms-model-mix-adapt-max3
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6729
- Cer: 0.1357
- Wer: 0.5953
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 1
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|---|---|---|---|---|---|
| 0.3948 | 0.2261 | 200 | 0.6911 | 0.1446 | 0.6222 |
| 0.425 | 0.4522 | 400 | 0.6826 | 0.1449 | 0.6325 |
| 0.394 | 0.6783 | 600 | 0.6796 | 0.1414 | 0.6274 |
| 0.3473 | 0.9045 | 800 | 0.6964 | 0.1417 | 0.6157 |
| 0.3528 | 1.1300 | 1000 | 0.6941 | 0.1418 | 0.6148 |
| 0.3965 | 1.3561 | 1200 | 0.6866 | 0.1405 | 0.6097 |
| 0.3656 | 1.5822 | 1400 | 0.6896 | 0.1373 | 0.6030 |
| 0.3588 | 1.8084 | 1600 | 0.6852 | 0.1412 | 0.6152 |
| 0.3796 | 2.0339 | 1800 | 0.6782 | 0.1427 | 0.6140 |
| 0.3501 | 2.2600 | 2000 | 0.6840 | 0.1393 | 0.6104 |
| 0.3358 | 2.4862 | 2200 | 0.6839 | 0.1381 | 0.6085 |
| 0.3487 | 2.7123 | 2400 | 0.6792 | 0.1374 | 0.6011 |
| 0.3347 | 2.9384 | 2600 | 0.6824 | 0.1369 | 0.6029 |
| 0.3354 | 3.1639 | 2800 | 0.6687 | 0.1370 | 0.6041 |
| 0.3271 | 3.3901 | 3000 | 0.6826 | 0.1371 | 0.6009 |
| 0.3331 | 3.6162 | 3200 | 0.6689 | 0.1380 | 0.5960 |
| 0.3165 | 3.8423 | 3400 | 0.6756 | 0.1357 | 0.5954 |
| 0.3263 | 4.0678 | 3600 | 0.6736 | 0.1360 | 0.5956 |
| 0.2909 | 4.2940 | 3800 | 0.6691 | 0.1359 | 0.5917 |
| 0.2644 | 4.5201 | 4000 | 0.6744 | 0.1356 | 0.5955 |
| 0.3013 | 4.7462 | 4200 | 0.6754 | 0.1363 | 0.5961 |
| 0.3 | 4.9723 | 4400 | 0.6729 | 0.1357 | 0.5953 |
Framework versions
- Transformers 4.52.1
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- -