ssc-aln-mms-model-mix-adapt-max3
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.8228
- Cer: 0.2215
- Wer: 0.5855
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 1
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|---|---|---|---|---|---|
| 0.8338 | 0.4145 | 200 | 1.7176 | 0.2315 | 0.6095 |
| 0.8118 | 0.8290 | 400 | 1.7758 | 0.2290 | 0.6039 |
| 0.7889 | 1.2425 | 600 | 1.7427 | 0.2327 | 0.6047 |
| 0.7945 | 1.6570 | 800 | 1.8760 | 0.2274 | 0.6053 |
| 0.7419 | 2.0705 | 1000 | 1.8701 | 0.2246 | 0.5969 |
| 0.7525 | 2.4850 | 1200 | 1.8128 | 0.2259 | 0.5939 |
| 0.7426 | 2.8995 | 1400 | 1.7984 | 0.2250 | 0.5900 |
| 0.6916 | 3.3130 | 1600 | 1.8222 | 0.2218 | 0.5885 |
| 0.6919 | 3.7275 | 1800 | 1.8308 | 0.2216 | 0.5864 |
| 0.6402 | 4.1409 | 2000 | 1.8133 | 0.2238 | 0.5871 |
| 0.6808 | 4.5554 | 2200 | 1.8048 | 0.2227 | 0.5858 |
| 0.6402 | 4.9699 | 2400 | 1.8228 | 0.2215 | 0.5855 |
Framework versions
- Transformers 4.52.1
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 31