ssc-aln-mms-model-mix-adapt-max3

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8228
  • Cer: 0.2215
  • Wer: 0.5855

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 1
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
0.8338 0.4145 200 1.7176 0.2315 0.6095
0.8118 0.8290 400 1.7758 0.2290 0.6039
0.7889 1.2425 600 1.7427 0.2327 0.6047
0.7945 1.6570 800 1.8760 0.2274 0.6053
0.7419 2.0705 1000 1.8701 0.2246 0.5969
0.7525 2.4850 1200 1.8128 0.2259 0.5939
0.7426 2.8995 1400 1.7984 0.2250 0.5900
0.6916 3.3130 1600 1.8222 0.2218 0.5885
0.6919 3.7275 1800 1.8308 0.2216 0.5864
0.6402 4.1409 2000 1.8133 0.2238 0.5871
0.6808 4.5554 2200 1.8048 0.2227 0.5858
0.6402 4.9699 2400 1.8228 0.2215 0.5855

Framework versions

  • Transformers 4.52.1
  • Pytorch 2.9.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
31
Safetensors
Model size
1.0B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results