ssc-ady-mms-model-mix-adapt-max3
This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5765
- Cer: 0.1402
- Wer: 0.6993
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|---|---|---|---|---|---|
| 0.9047 | 0.2710 | 200 | 0.6095 | 0.1972 | 0.8507 |
| 0.5954 | 0.5420 | 400 | 0.4688 | 0.1525 | 0.7410 |
| 0.5498 | 0.8130 | 600 | 0.4338 | 0.1466 | 0.7218 |
| 0.4841 | 1.0840 | 800 | 0.4005 | 0.1352 | 0.6921 |
| 0.4703 | 1.3550 | 1000 | 0.3867 | 0.1314 | 0.6815 |
| 0.4535 | 1.6260 | 1200 | 0.3772 | 0.1311 | 0.6870 |
| 0.4435 | 1.8970 | 1400 | 0.3557 | 0.1252 | 0.6715 |
| 0.4235 | 2.1680 | 1600 | 0.3442 | 0.1216 | 0.6588 |
| 0.4034 | 2.4390 | 1800 | 0.3496 | 0.1242 | 0.6621 |
| 0.3985 | 2.7100 | 2000 | 0.3347 | 0.1199 | 0.6497 |
| 0.3996 | 2.9810 | 2200 | 0.3365 | 0.1190 | 0.6456 |
| 0.3794 | 3.2520 | 2400 | 0.3270 | 0.1203 | 0.6463 |
| 0.3742 | 3.5230 | 2600 | 0.3236 | 0.1170 | 0.6393 |
| 0.3818 | 3.7940 | 2800 | 0.3254 | 0.1152 | 0.6338 |
| 0.3718 | 4.0650 | 3000 | 0.3336 | 0.1183 | 0.6314 |
| 0.3811 | 4.3360 | 3200 | 0.3318 | 0.1194 | 0.6358 |
| 0.3798 | 4.6070 | 3400 | 0.3212 | 0.1164 | 0.6310 |
| 0.3684 | 4.8780 | 3600 | 0.3324 | 0.1214 | 0.6554 |
| 0.3586 | 5.1491 | 3800 | 0.3205 | 0.1141 | 0.6185 |
| 0.3617 | 5.4201 | 4000 | 0.3262 | 0.1163 | 0.6293 |
| 0.395 | 5.6911 | 4200 | 0.3667 | 0.1171 | 0.6379 |
| 0.4125 | 5.9621 | 4400 | 0.3930 | 0.1217 | 0.6552 |
| 0.4441 | 6.2331 | 4600 | 0.4093 | 0.1314 | 0.6719 |
| 0.5343 | 6.5041 | 4800 | 0.4458 | 0.1372 | 0.6988 |
| 0.6275 | 6.7751 | 5000 | 0.5100 | 0.1455 | 0.7081 |
| 0.684 | 7.0461 | 5200 | 0.5860 | 0.1467 | 0.7232 |
| 0.6562 | 7.3171 | 5400 | 0.5362 | 0.1548 | 0.7259 |
| 0.6384 | 7.5881 | 5600 | 0.5052 | 0.1430 | 0.7050 |
| 0.621 | 7.8591 | 5800 | 0.5097 | 0.1475 | 0.7110 |
| 0.6395 | 8.1301 | 6000 | 0.5098 | 0.1451 | 0.7048 |
| 0.6656 | 8.4011 | 6200 | 0.5299 | 0.1447 | 0.7057 |
| 0.6787 | 8.6721 | 6400 | 0.5523 | 0.1523 | 0.7259 |
| 0.7118 | 8.9431 | 6600 | 0.5753 | 0.1401 | 0.6995 |
| 0.6841 | 9.2141 | 6800 | 0.5741 | 0.1401 | 0.6983 |
| 0.7023 | 9.4851 | 7000 | 0.5794 | 0.1388 | 0.6930 |
| 0.687 | 9.7561 | 7200 | 0.5765 | 0.1402 | 0.6993 |
Framework versions
- Transformers 4.52.1
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 8
Model tree for ctaguchi/ssc-ady-mms-model-mix-adapt-max3
Base model
facebook/mms-1b-all