vit-base-oxford-iiit-pets
This model is a fine-tuned version of google/vit-base-patch16-224 on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set:
- Loss: 0.1872
- Accuracy: 0.9459
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 0.3871 | 1.0 | 370 | 0.3107 | 0.9256 |
| 0.2244 | 2.0 | 740 | 0.2439 | 0.9323 |
| 0.1725 | 3.0 | 1110 | 0.2220 | 0.9378 |
| 0.145 | 4.0 | 1480 | 0.2157 | 0.9350 |
| 0.129 | 5.0 | 1850 | 0.2131 | 0.9337 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
Zero-Shot classification model
This section compares the performance of a zero-shot model (openai/clip-vit-large-patch14) on the Oxford Pets dataset (pcuenq/oxford-pets).
- Model used:
openai/clip-vit-large-patch14 - Dataset:
pcuenq/oxford-pets(train split) - Evaluation Task: Zero-Shot Image Classification
- Candidate Labels: 37 pet breeds from the dataset
Results:
Zero-Shot Evaluation mit CLIP: Accuracy: 0.8800 Precision: 0.8768 Recall: 0.8800
Evaluated using Hugging Face transformers pipeline and sklearn.metrics on the full training set.
- Downloads last month
- 10
Model tree for alimoh02/vit-base-oxford-iiit-pets
Base model
google/vit-base-patch16-224