Add library name and pipeline tag

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +329 -3
README.md CHANGED
@@ -1,6 +1,7 @@
1
-
2
  ---
3
  license: llama2
 
 
4
  base_model:
5
  - unsloth/llama-2-13b
6
  - layoric/llama-2-13b-code-alpaca
@@ -9,8 +10,8 @@ base_model:
9
  tags:
10
  - merge
11
  ---
12
- # AIM Paper Checkpoints Uploaded For Replication
13
- This repository includes one of the checkpoints used in the paper "Activation-Informed Merging of Large Language Models". Specifics of this model are as follows:
14
 
15
  - **Merging Method:** dare_linear
16
  - **Models Used In Merging**
@@ -21,3 +22,328 @@ This repository includes one of the checkpoints used in the paper "Activation-In
21
  - **AIM:** True
22
 
23
  Benchmark results and paper details can be found at the official [GitHub](https://github.com/ahnobari/ActivationInformedMerging.git).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: llama2
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
  base_model:
6
  - unsloth/llama-2-13b
7
  - layoric/llama-2-13b-code-alpaca
 
10
  tags:
11
  - merge
12
  ---
13
+
14
+ This repository includes one of the checkpoints used in the paper "[Activation-Informed Merging of Large Language Models](https://huggingface.co/papers/2502.02421)". Specifics of this model are as follows:
15
 
16
  - **Merging Method:** dare_linear
17
  - **Models Used In Merging**
 
22
  - **AIM:** True
23
 
24
  Benchmark results and paper details can be found at the official [GitHub](https://github.com/ahnobari/ActivationInformedMerging.git).
25
+
26
+ # File information
27
+
28
+ The repository contains the following file information:
29
+
30
+ Filename: added_tokens.json
31
+ Content: {
32
+ "<pad>": 32001,
33
+ "[PAD]": 32000
34
+ }
35
+
36
+ Filename: tokenizer_config.json
37
+ Content: {
38
+ "add_bos_token": true,
39
+ "add_eos_token": false,
40
+ "add_prefix_space": null,
41
+ "added_tokens_decoder": {
42
+ "0": {
43
+ "content": "<unk>",
44
+ "lstrip": false,
45
+ "normalized": false,
46
+ "rstrip": false,
47
+ "single_word": false,
48
+ "special": true
49
+ },
50
+ "1": {
51
+ "content": "<s>",
52
+ "lstrip": false,
53
+ "normalized": false,
54
+ "rstrip": false,
55
+ "single_word": false,
56
+ "special": true
57
+ },
58
+ "2": {
59
+ "content": "</s>",
60
+ "lstrip": false,
61
+ "normalized": false,
62
+ "rstrip": false,
63
+ "single_word": false,
64
+ "special": true
65
+ },
66
+ "32000": {
67
+ "content": "[PAD]",
68
+ "lstrip": false,
69
+ "normalized": false,
70
+ "rstrip": false,
71
+ "single_word": false,
72
+ "special": true
73
+ },
74
+ "32001": {
75
+ "content": "<pad>",
76
+ "lstrip": false,
77
+ "normalized": false,
78
+ "rstrip": false,
79
+ "single_word": false,
80
+ "special": true
81
+ }
82
+ },
83
+ "bos_token": "<s>",
84
+ "clean_up_tokenization_spaces": false,
85
+ "eos_token": "</s>",
86
+ "extra_special_tokens": {},
87
+ "legacy": false,
88
+ "model_max_length": 1000000000000000019884624838656,
89
+ "pad_token": "<pad>",
90
+ "padding_side": "left",
91
+ "sp_model_kwargs": {},
92
+ "tokenizer_class": "LlamaTokenizer",
93
+ "unk_token": "<unk>",
94
+ "use_default_system_prompt": false
95
+ }
96
+
97
+ Filename: special_tokens_map.json
98
+ Content: {
99
+ "bos_token": {
100
+ "content": "<s>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false
105
+ },
106
+ "eos_token": {
107
+ "content": "</s>",
108
+ "lstrip": false,
109
+ "normalized": false,
110
+ "rstrip": false,
111
+ "single_word": false
112
+ },
113
+ "pad_token": {
114
+ "content": "<pad>",
115
+ "lstrip": false,
116
+ "normalized": false,
117
+ "rstrip": false,
118
+ "single_word": false
119
+ },
120
+ "unk_token": {
121
+ "content": "<unk>",
122
+ "lstrip": false,
123
+ "normalized": false,
124
+ "rstrip": false,
125
+ "single_word": false
126
+ }
127
+ }
128
+
129
+ Filename: config.json
130
+ Content: {
131
+ "_name_or_path": "./FinalSet/AWR_04_dare_linear_Instruction Tuned-Math-Code",
132
+ "architectures": [
133
+ "LlamaForCausalLM"
134
+ ],
135
+ "attention_bias": false,
136
+ "attention_dropout": 0.0,
137
+ "bos_token_id": 1,
138
+ "eos_token_id": 2,
139
+ "head_dim": 128,
140
+ "hidden_act": "silu",
141
+ "hidden_size": 5120,
142
+ "initializer_range": 0.02,
143
+ "intermediate_size": 13824,
144
+ "max_position_embeddings": 4096,
145
+ "mlp_bias": false,
146
+ "model_type": "llama",
147
+ "num_attention_heads": 40,
148
+ "num_hidden_layers": 40,
149
+ "num_key_value_heads": 40,
150
+ "pad_token_id": 0,
151
+ "pretraining_tp": 1,
152
+ "rms_norm_eps": 1e-05,
153
+ "rope_scaling": null,
154
+ "rope_theta": 10000.0,
155
+ "tie_word_embeddings": false,
156
+ "torch_dtype": "float16",
157
+ "transformers_version": "4.48.0",
158
+ "unsloth_version": "2024.9",
159
+ "use_cache": true,
160
+ "vocab_size": 32002
161
+ }
162
+
163
+ Filename: tokenizer.json
164
+ Content: "Content of the file is larger than 50 KB, too long to display."
165
+
166
+ Filename: generation_config.json
167
+ Content: {
168
+ "bos_token_id": 1,
169
+ "do_sample": true,
170
+ "eos_token_id": 2,
171
+ "max_length": 4096,
172
+ "pad_token_id": 0,
173
+ "temperature": 0.6,
174
+ "top_p": 0.9,
175
+ "transformers_version": "4.48.0"
176
+ }
177
+
178
+ Filename: tokenizer.model
179
+ Content: "Content of the file is larger than 50 KB, too long to display."
180
+
181
+ Filename: model.safetensors.index.json
182
+ Content: "Content of the file is larger than 50 KB, too long to display."
183
+
184
+ # Project page
185
+
186
+ The project page URL we found has the following URL:
187
+
188
+ # Github README
189
+
190
+ The Github README we found contains the following content:
191
+
192
+ # ActivationInformedMerging
193
+ <img width="100%" alt="Screenshot 2025-02-04 at 9 56 19β€―AM" src="https://github.com/user-attachments/assets/5b328cf0-797d-4aa4-9a98-1224cc4a971a" />
194
+
195
+ Model merging, a method that combines the parameters and embeddings of multiple fine-tuned large language models (LLMs), offers a promising approach to enhance model performance across various tasks while maintaining computational efficiency.
196
+ This paper introduces Activation-Informed Merging (AIM), a technique that integrates the information from the activation space of LLMs into the merging process to improve performance and robustness.
197
+ AIM is designed as a flexible, complementary solution that is applicable to any existing merging method.
198
+ It aims to preserve critical weights from the base model, drawing on principles from continual learning(CL) and model compression.
199
+ Utilizing a task-agnostic calibration set, AIM selectively prioritizes essential weights during merging. We empirically demonstrate that AIM significantly enhances the performance of merged models across multiple benchmarks. Our findings suggest that considering the activation-space information can provide substantial advancements in the model merging strategies for LLMs with up to 40% increase in benchmark performance.
200
+
201
+ [πŸ“ Full Paper](https://arxiv.org/abs/2502.02421) | [πŸ€—AIM Checkpoints](https://huggingface.co/collections/ahn1376/aim-merged-checkpoints-with-aim-67a226c77c915124f4bab456) | [πŸ€—Baseline Checkpoints](https://huggingface.co/collections/ahn1376/aim-merged-checkpoints-baseline-w-o-aim-67a15f05fa1066b3f642f2c6)
202
+
203
+ # Checkpoints Used In Experiments
204
+ All checkpoints (merged with and without AIM) that were used for experiments in the paper are provided on huggingface. Below are the links to the aforementioned models:
205
+
206
+ ## Models with AIM ([Collection πŸ€—](https://huggingface.co/collections/ahn1376/aim-merged-checkpoints-with-aim-67a226c77c915124f4bab456))
207
+
208
+ | Method | Code-Math | Code-Instruction | Math-Instruction | Code-Math-Instruction |
209
+ |--------|-----------|------------------|------------------|---------------------|
210
+ | DARE Linear | [Link πŸ€—](https://huggingface.co/ahn1376/DARETaskArithmetic___Code-Math___AIM) | [Link πŸ€—](https://huggingface.co/ahn1376/DARETaskArithmetic___Code-Instruction_Tuned___AIM) | [Link πŸ€—](https://huggingface.co/ahn1376/DARETaskArithmetic___Math-Instruction_Tuned___AIM) | [Link πŸ€—](https://huggingface.co/ahn1376/DARETaskArithmetic___Code-Math-Instruction_Tuned___AIM) |
211
+ | DARE Ties | [Link πŸ€—](https://huggingface.co/ahn1376/DARETies___Code-Math___AIM) | [Link πŸ€—](https://huggingface.co/ahn1376/DARETies___Code-Instruction_Tuned___AIM) | [Link πŸ€—](https://huggingface.co/ahn1376/DARETies___Math-Instruction_Tuned___AIM) | [Link πŸ€—](https://huggingface.co/ahn1376/DARETies___Code-Math-Instruction_Tuned___AIM) |
212
+ | Ties | [Link πŸ€—](https://huggingface.co/ahn1376/Ties___Code-Math___AIM) | [Link πŸ€—](https://huggingface.co/ahn1376/Ties___Code-Instruction_Tuned___AIM) | [Link πŸ€—](https://huggingface.co/ahn1376/Ties___Math-Instruction_Tuned___AIM) | [Link πŸ€—](https://huggingface.co/ahn1376/Ties___Code-Math-Instruction_Tuned___AIM) |
213
+ | Task Arithmetic | [Link πŸ€—](https://huggingface.co/ahn1376/TaskArithmetic___Code-Math___AIM) | [Link πŸ€—](https://huggingface.co/ahn1376/TaskArithmetic___Code-Instruction_Tuned___AIM) | [Link πŸ€—](https://huggingface.co/ahn1376/TaskArithmetic___Math-Instruction_Tuned___AIM) | [Link πŸ€—](https://huggingface.co/ahn1376/TaskArithmetic___Code-Math-Instruction_Tuned___AIM) |
214
+ | WIDEN | [Link πŸ€—](https://huggingface.co/ahn1376/WIDEN___Code-Math___AIM) | [Link πŸ€—](https://huggingface.co/ahn1376/WIDEN___Code-Instruction_Tuned___AIM) | [Link πŸ€—](https://huggingface.co/ahn1376/WIDEN___Math-Instruction_Tuned___AIM) | [Link πŸ€—](https://huggingface.co/ahn1376/WIDEN___Code-Math-Instruction_Tuned___AIM) |
215
+
216
+ ## Models without AIM ([Collection πŸ€—](https://huggingface.co/collections/ahn1376/aim-merged-checkpoints-baseline-w-o-aim-67a15f05fa1066b3f642f2c6))
217
+
218
+ | Method | Code-Math | Code-Instruction | Math-Instruction | Code-Math-Instruction |
219
+ |--------|-----------|------------------|------------------|---------------------|
220
+ | DARE Linear | [Link πŸ€—](https://huggingface.co/ahn1376/DARETaskArithmetic___Code-Math) | [Link πŸ€—](https://huggingface.co/ahn1376/DARETaskArithmetic___Code-Instruction_Tuned) | [Link πŸ€—](https://huggingface.co/ahn1376/DARETaskArithmetic___Math-Instruction_Tuned) | [Link πŸ€—](https://huggingface.co/ahn1376/DARETaskArithmetic___Code-Math-Instruction_Tuned) |
221
+ | DARE Ties | [Link πŸ€—](https://huggingface.co/ahn1376/DARETies___Code-Math) | [Link πŸ€—](https://huggingface.co/ahn1376/DARETies___Code-Instruction_Tuned) | [Link πŸ€—](https://huggingface.co/ahn1376/DARETies___Math-Instruction_Tuned) | [Link πŸ€—](https://huggingface.co/ahn1376/DARETies___Code-Math-Instruction_Tuned) |
222
+ | Ties | [Link πŸ€—](https://huggingface.co/ahn1376/Ties___Code-Math) | [Link πŸ€—](https://huggingface.co/ahn1376/Ties___Code-Instruction_Tuned) | [Link πŸ€—](https://huggingface.co/ahn1376/Ties___Math-Instruction_Tuned) | [Link πŸ€—](https://huggingface.co/ahn1376/Ties___Code-Math-Instruction_Tuned) |
223
+ | Task Arithmetic | [Link πŸ€—](https://huggingface.co/ahn1376/TaskArithmetic___Code-Math) | [Link πŸ€—](https://huggingface.co/ahn1376/TaskArithmetic___Code-Instruction_Tuned) | [Link πŸ€—](https://huggingface.co/ahn1376/TaskArithmetic___Math-Instruction_Tuned) | [Link πŸ€—](https://huggingface.co/ahn1376/TaskArithmetic___Code-Math-Instruction_Tuned) |
224
+ | WIDEN | [Link πŸ€—](https://huggingface.co/ahn1376/WIDEN___Code-Math) | [Link πŸ€—](https://huggingface.co/ahn1376/WIDEN___Code-Instruction_Tuned) | [Link πŸ€—](https://huggingface.co/ahn1376/WIDEN___Math-Instruction_Tuned) | [Link πŸ€—](https://huggingface.co/ahn1376/WIDEN___Code-Math-Instruction_Tuned) |
225
+
226
+ # Usage
227
+ You can re-deo the experiments we have here using the provided code. Below we detail how to replicate the experiments.
228
+
229
+ ## Merging Models
230
+ If you wish to merge the models yourself instead of using the provided checkpoints you can do so with the `merge.py` script provided. For example to perform DARE Ties merging on the Code, Math and Instruction Tuned models you can run:
231
+
232
+ ```bash
233
+ python merge.py --method dare_ties --base_model unsloth/llama-2-13b --models_to_merge WizardLMTeam/WizardLM-13B-V1.2,vanillaOVO/WizardMath-13B-V1.0,layoric/llama-2-13b-code-alpaca --save_path ./DARE_TIES_InstructMathCode
234
+ ```
235
+
236
+ ## Evaluating Models on Benchmarks
237
+ Once you have the checkpoints you want to test you can run the `evaluate_model.py` script to run the benchamrks on the model. For example to run the benchmarks on the model merged above you can run:
238
+
239
+
240
+ ```bash
241
+ python evaluate_model.py --model ./DARE_TIES_InstructMathCode
242
+ ```
243
+
244
+ or if you wanted to use the provided checkpoints:
245
+
246
+ ```bash
247
+ python evaluate_model.py --model ahn1376/DARETies___Code-Math-Instruction_Tuned
248
+ ```
249
+
250
+ ## Applying AIM to A Merged Model
251
+ If you want to apply AIM to any merged model you will need to provide the merged checkpoint as well as the base model checkpoint. The only hyper-parameter in AIM is $\omega$, which we recommend to be set between $0.2-0.6$ we set this to $0.4$ for the experiments in our paper, but in some cases lower values (more relaxation) will yeild better results. Below is how you can apply AIM to the checkpoint the code above makes:
252
+
253
+ ```bash
254
+ python performAIM.py --merged_model ./DARE_TIES_InstructMathCode --pretrained_model_name unsloth/llama-2-13b --omega 0.4 --save_path ./DARE_TIES_AIM_InstructMathCode
255
+ ```
256
+
257
+
258
+ # Summary of Findings
259
+ We find that in basically all merging methods we tested applying AIM improves performance and pushed the pareto front of the resulting model population and achieves the highest scrores in benchmarks. The figure below shows how with decreasing $\omega$ (more AIM relaxation) leads to further improvements in some models (HV gain is the hypervolume gained by adding the model to the population models used for merging (more is better)):
260
+
261
+ <img width="600px" alt="Screenshot 2025-02-04 at 10 15 38β€―AM" src="https://github.com/user-attachments/assets/5cd5119e-a292-45d4-972f-b2dd6febf6f8" />
262
+
263
+ We can observe this better by visualizing some of the pareto fronts for different model populations:
264
+
265
+ <img width="100%" alt="Screenshot 2025-02-04 at 10 22 25β€―AM" src="https://github.com/user-attachments/assets/5d88a71e-16ca-4f71-84f7-6e8de96ea69a" />
266
+
267
+ Overall the results of our experiments are as follows for the different tests:
268
+
269
+ ## Base Models
270
+
271
+ | Method | Model(s) | AIM | HumanEval | MBPP | MMLU | MATH | GSM8K | IFEval | HV Gain |
272
+ |--------|----------|-----|-----------|------|------|------|-------|---------|----------|
273
+ | - | Base | - | 17.07 | 27.80 | 52.18 | 0.70 | 4.20 | 25.10 | - |
274
+ | - | Code | - | 17.07 | 31.60 | 52.91 | 6.00 | 24.10 | 26.25 | - |
275
+ | - | Instruction Tuned | - | **26.83** | **34.80** | **53.41** | 7.50 | 43.40 | **35.67** | - |
276
+ | - | Math | - | 15.24 | 27.60 | 51.89 | **13.10** | **59.10** | 21.58 | - |
277
+
278
+ ## Merged Models
279
+
280
+ ### DARE Task Arithmetic
281
+
282
+ | Model(s) | AIM | HumanEval | MBPP | MMLU | MATH | GSM8K | IFEval | HV Gain |
283
+ |----------|-----|-----------|------|------|------|-------|---------|----------|
284
+ | Code + Instruction Tuned | No | 26.83 | 34.40 | 53.53 | 8.40 | 45.80 | 33.42 | 0.27 |
285
+ | | Yes | 29.27 (+9.09%) | 36.00 (+4.65%) | 54.18 (+1.21%) | 8.30 (-1.19%) | 46.20 (+0.87%) | 32.00 (-4.25%) | 0.28 (+2.49%) |
286
+ | Code + Math | No | 16.46 | 28.60 | 51.96 | 15.10 | 64.70 | 22.02 | 0.23 |
287
+ | | Yes | 15.85 (-3.71%) | 29.60 (+3.50%) | 52.50 (+1.04%) | 14.80 (-1.99%) | 64.10 (-0.93%) | 21.91 (-0.50%) | 0.23 (-1.65%) |
288
+ | Instruction Tuned + Math | No | 5.49 | 19.00 | 51.08 | 9.80 | 54.30 | 32.35 | 0.18 |
289
+ | | Yes | 12.20 (+122.22%) | 28.20 (+48.42%) | 52.72 (+3.21%) | 12.90 (+31.63%) | 62.20 (+14.55%) | 31.96 (-1.21%) | 0.26 (+40.71%) |
290
+ | Code + Instruction Tuned + Math | No | 11.59 | 19.60 | 50.89 | 9.10 | 49.70 | 33.20 | 0.16 |
291
+ | | Yes | 15.85 (+36.76%) | 27.00 (+37.76%) | 52.59 (+3.34%) | 12.20 (+34.07%) | 60.70 (+22.13%) | 33.59 (+1.17%) | 0.23 (+40.59%) |
292
+
293
+ ### DARE Ties
294
+
295
+ | Model(s) | AIM | HumanEval | MBPP | MMLU | MATH | GSM8K | IFEval | HV Gain |
296
+ |----------|-----|-----------|------|------|------|-------|---------|----------|
297
+ | Code + Instruction Tuned | No | 30.49 | 35.20 | 53.40 | 8.60 | 46.20 | 33.28 | 0.28 |
298
+ | | Yes | **30.49** | **36.80** (+4.55%) | 54.02 (+1.16%) | 8.60 | 47.20 (+2.16%) | 33.16 (-0.36%) | 0.29 (+1.63%) |
299
+ | Code + Math | No | 17.07 | 27.40 | 51.92 | 14.90 | 63.60 | 22.53 | 0.23 |
300
+ | | Yes | 17.68 (+3.57%) | 29.00 (+5.84%) | 52.61 (+1.33%) | 15.20 (+2.01%) | 63.90 (+0.47%) | 21.10 (-6.35%) | 0.24 (+4.00%) |
301
+ | Instruction Tuned + Math | No | 8.54 | 23.80 | 51.39 | 9.20 | 54.10 | 33.89 | 0.20 |
302
+ | | Yes | 15.85 (+85.60%) | 30.20 (+26.89%) | 52.89 (+2.92%) | 11.60 (+26.09%) | 57.80 (+6.84%) | 35.63 (+5.13%) | 0.26 (+31.22%) |
303
+ | Code + Instruction Tuned + Math | No | 13.41 | 21.20 | 51.15 | 8.70 | 51.50 | 35.75 | 0.17 |
304
+ | | Yes | 19.51 (+45.49%) | 28.60 (+34.91%) | 52.63 (+2.89%) | 11.60 (+33.33%) | 57.00 (+10.68%) | **36.20** (+1.26%) | 0.24 (+41.28%) |
305
+
306
+ ### Task Arithmetic
307
+
308
+ | Model(s) | AIM | HumanEval | MBPP | MMLU | MATH | GSM8K | IFEval | HV Gain |
309
+ |----------|-----|-----------|------|------|------|-------|---------|----------|
310
+ | Code + Instruction Tuned | No | 29.27 | 33.80 | 53.44 | 8.60 | 47.10 | 31.60 | 0.28 |
311
+ | | Yes | 29.88 (+2.08%) | 35.80 (+5.92%) | 54.12 (+1.27%) | 7.80 (-9.30%) | 46.60 (-1.06%) | 32.01 (+1.30%) | 0.28 (+0.61%) |
312
+ | Code + Math | No | 18.29 | 28.60 | 52.10 | 15.00 | 64.70 | 21.92 | 0.24 |
313
+ | | Yes | 17.68 (-3.34%) | 29.20 (+2.10%) | 52.52 (+0.81%) | 14.60 (-2.67%) | 64.50 (-0.31%) | 21.54 (-1.73%) | 0.24 (-2.65%) |
314
+ | Instruction Tuned + Math | No | 4.27 | 20.20 | 51.50 | 10.00 | 54.20 | 31.31 | 0.18 |
315
+ | | Yes | 8.54 (+100.00%) | 26.40 (+30.69%) | 52.83 (+2.58%) | 12.80 (+28.00%) | 61.30 (+13.10%) | 32.62 (+4.18%) | 0.24 (+34.52%) |
316
+ | Code + Instruction Tuned + Math | No | 11.59 | 19.60 | 51.20 | 9.00 | 52.70 | 32.87 | 0.16 |
317
+ | | Yes | 15.24 (+31.49%) | 27.40 (+39.80%) | 52.63 (+2.79%) | 12.00 (+33.33%) | 58.10 (+10.25%) | 33.91 (+3.16%) | 0.22 (+31.97%) |
318
+
319
+ ### Ties Merging
320
+
321
+ | Model(s) | AIM | HumanEval | MBPP | MMLU | MATH | GSM8K | IFEval | HV Gain |
322
+ |----------|-----|-----------|------|------|------|-------|---------|----------|
323
+ | Code + Instruction Tuned | No | 16.46 | 23.60 | 52.70 | 2.70 | 5.40 | 24.48 | 0.00 |
324
+ | | Yes | 15.24 (-7.41%) | 24.20 (+2.54%) | 53.15 (+0.85%) | 2.60 (-3.70%) | 5.20 (-3.70%) | 22.87 (-6.58%) | 0.05 (+inf%) |
325
+ | Code + Math | No | 15.85 | 26.80 | 51.86 | 14.30 | 62.60 | 21.63 | 0.20 |
326
+ | | Yes | 15.85 | 28.60 (+6.72%) | 52.29 (+0.83%) | **15.30** (+6.99%) | 63.80 (+1.92%) | 22.64 (+4.67%) | 0.23 (+13.55%) |
327
+ | Instruction Tuned + Math | No | 28.05 | 34.60 | 54.45 | 8.70 | 44.70 | 34.04 | 0.23 |
328
+ | | Yes | 27.44 (-2.17%) | 35.00 (+1.16%) | 54.74 (+0.53%) | 9.30 (+6.90%) | 46.10 (+3.13%) | 34.51 (+1.38%) | 0.25 (+6.38%) |
329
+ | Code + Instruction Tuned + Math | No | 21.34 | 29.20 | 53.97 | 6.30 | 29.20 | 26.95 | 0.11 |
330
+ | | Yes | 20.73 (-2.86%) | 29.20 | 54.46 (+0.91%) | 5.70 (-9.52%) | 23.70 (-18.84%) | 25.98 (-3.60%) | 0.11 (+4.33%) |
331
+
332
+ ### WIDEN
333
+
334
+ | Model(s) | AIM | HumanEval | MBPP | MMLU | MATH | GSM8K | IFEval | HV Gain |
335
+ |----------|-----|-----------|------|------|------|-------|---------|----------|
336
+ | Code + Instruction Tuned | No | 26.22 | 35.60 | 54.90 | 8.30 | 45.00 | 30.42 | 0.27 |
337
+ | | Yes | 25.61 (-2.33%) | 34.60 (-2.81%) | 54.97 (+0.13%) | 8.20 (-1.20%) | 44.10 (-2.00%) | 31.60 (+3.88%) | 0.26 (-0.93%) |
338
+ | Code + Math | No | 17.07 | 29.40 | 53.35 | 14.20 | 64.40 | 24.02 | 0.24 |
339
+ | | Yes | 17.07 | 29.60 (+0.68%) | 53.36 (+0.02%) | 14.30 (+0.70%) | 62.20 (-3.42%) | 23.95 (-0.29%) | 0.24 (-1.22%) |
340
+ | Instruction Tuned + Math | No | 24.39 | 30.40 | 54.20 | 14.60 | 66.00 | 30.82 | 0.30 |
341
+ | | Yes | 23.78 (-2.50%) | 32.00 (+5.26%) | 54.69 (+0.90%) | 15.10 (+3.42%) | **68.20** (+3.33%) | 31.23 (+1.33%) | **0.31** (+2.54%) |
342
+ | Code + Instruction Tuned + Math | No | 25.00 | 33.20 | 54.58 | 13.50 | 64.20 | 31.44 | 0.29 |
343
+ | | Yes | 26.83 (+7.32%) | 32.80 (-1.20%) | **54.98** (+0.73%) | 14.40 (+6.67%) | 64.00 (-0.31%) | 32.82 (+4.39%) | 0.30 (+4.70%) |
344
+
345
+ # Citation
346
+ ```bib
347
+ @misc{nobari2025activationinformedmerginglargelanguage,
348
+ title={Activation-Informed Merging of Large Language Models},
349
+ author={Amin Heyrani Nobari and Kaveh Alimohammadi and Ali ArjomandBigdeli and Akash Srivastava and Fa