Owl-v1
Collection
2 items
•
Updated
This is a sentence-transformers model finetuned from Shuu12121/CodeModernBERT-Owl-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Computes the absolute value of each element retrieved from a strided input array `x` via a callback function and assigns each result to an element in a strided output array `y`.\n\n@param {NonNegativeInteger} N - number of indexed elements\n@param {Collection} x - input array/collection\n@param {integer} strideX - `x` stride length\n@param {NonNegativeInteger} offsetX - starting `x` index\n@param {Collection} y - destination array/collection\n@param {integer} strideY - `y` stride length\n@param {NonNegativeInteger} offsetY - starting `y` index\n@param {Callback} clbk - callback\n@param {*} [thisArg] - callback execution context\n@returns {Collection} `y`\n\n@example\nfunction accessor( v ) {\n return v * 2.0;\n}\n\nvar x = [ 1.0, -2.0, 3.0, -4.0, 5.0 ];\nvar y = [ 0.0, 0.0, 0.0, 0.0, 0.0 ];\n\nabsBy( x.length, x, 1, 0, y, 1, 0, accessor );\n\nconsole.log( y );\n// => [ 2.0, 4.0, 6.0, 8.0, 10.0 ]',
'function absBy( N, x, strideX, offsetX, y, strideY, offsetY, clbk, thisArg ) {\n\treturn mapBy( N, x, strideX, offsetX, y, strideY, offsetY, abs, clbk, thisArg ); // eslint-disable-line max-len\n}',
'public ArrayList<Skyline> findSkyline(int start, int end) {\n // Base case: only one building, return its skyline.\n if (start == end) {\n ArrayList<Skyline> list = new ArrayList<>();\n list.add(new Skyline(building[start].left, building[start].height));\n list.add(new Skyline(building[end].right, 0)); // Add the end of the building\n return list;\n }\n\n int mid = (start + end) / 2;\n\n ArrayList<Skyline> sky1 = this.findSkyline(start, mid); // Find the skyline of the left half\n ArrayList<Skyline> sky2 = this.findSkyline(mid + 1, end); // Find the skyline of the right half\n return this.mergeSkyline(sky1, sky2); // Merge the two skylines\n }',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8429, 0.0136],
# [0.8429, 1.0000, 0.1084],
# [0.0136, 0.1084, 1.0000]])
sentence_0, sentence_1, and label| sentence_0 | sentence_1 | label | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence_0 | sentence_1 | label |
|---|---|---|
Set the column title |
setHeader = function(column, newValue) { |
|
Elsewhere this is known as a "Weak Value Map". Whereas a std JS WeakMap |
makeFinalizingMap = (finalizer, opts) => { |
|
Creates a function that memoizes the result of |
function memoize(func, resolver) { |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
per_device_train_batch_size: 120per_device_eval_batch_size: 120fp16: Truemulti_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 120per_device_eval_batch_size: 120per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}| Epoch | Step | Training Loss |
|---|---|---|
| 0.0750 | 500 | 0.2167 |
| 0.1501 | 1000 | 0.1158 |
| 0.2251 | 1500 | 0.1081 |
| 0.3001 | 2000 | 0.1079 |
| 0.3752 | 2500 | 0.0994 |
| 0.4502 | 3000 | 0.0941 |
| 0.5252 | 3500 | 0.0873 |
| 0.6002 | 4000 | 0.0967 |
| 0.6753 | 4500 | 0.0863 |
| 0.7503 | 5000 | 0.0829 |
| 0.8253 | 5500 | 0.0821 |
| 0.9004 | 6000 | 0.0821 |
| 0.9754 | 6500 | 0.0794 |
| 1.0504 | 7000 | 0.0418 |
| 1.1255 | 7500 | 0.0237 |
| 1.2005 | 8000 | 0.0233 |
| 1.2755 | 8500 | 0.0231 |
| 1.3505 | 9000 | 0.0248 |
| 1.4256 | 9500 | 0.0245 |
| 1.5006 | 10000 | 0.0237 |
| 1.5756 | 10500 | 0.025 |
| 1.6507 | 11000 | 0.0232 |
| 1.7257 | 11500 | 0.0231 |
| 1.8007 | 12000 | 0.0218 |
| 1.8758 | 12500 | 0.0233 |
| 1.9508 | 13000 | 0.0221 |
| 2.0258 | 13500 | 0.0177 |
| 2.1008 | 14000 | 0.0072 |
| 2.1759 | 14500 | 0.0066 |
| 2.2509 | 15000 | 0.0068 |
| 2.3259 | 15500 | 0.0069 |
| 2.4010 | 16000 | 0.0062 |
| 2.4760 | 16500 | 0.0068 |
| 2.5510 | 17000 | 0.0064 |
| 2.6261 | 17500 | 0.0061 |
| 2.7011 | 18000 | 0.0062 |
| 2.7761 | 18500 | 0.0058 |
| 2.8511 | 19000 | 0.0057 |
| 2.9262 | 19500 | 0.0058 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
Shuu12121/CodeModernBERT-Owl-v1