Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-mpnet-base-v2 on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The marriage of Baptiste and Hannah demonstrates their commitment to sharing their lives and supporting one another.',
'By getting married, Baptiste and Hannah take on a duty to care for each other, both emotionally and materially.',
'If the marriage brings happiness to Baptiste and Hannah, then they are pursuing their right to happiness.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
anchor, positive, and negative| anchor | positive | negative | |
|---|---|---|---|
| type | string | string | string |
| details |
|
|
|
| anchor | positive | negative |
|---|---|---|
Saving the group of people from harm by diverting the trolley supports the value of preserving life. |
The group of people tied to the tracks have a right to life, which is protected when the trolley is diverted to save them. |
Diverting the trolley reduces overall harm by preventing the deaths of many people at the cost of one person's life. |
The bake sale could be seen as an expression of support for a particular cause, and the right to freely express oneself and associate with others who share the same views is important. |
The bake sale might be seen as a form of protest or support for a specific cause, and individuals have the right to engage in peaceful protest or show support. |
If the bake sale directly or indirectly promotes religious discrimination, this can infringe on the fundamental right of individuals to be free from discrimination or harm due to their religious beliefs. |
Children have a right to life, and saving them from danger upholds this right. |
Children should be protected from harm, abuse, and danger, and saving them ensures this right is respected. |
Children have a right to grow up with access to healthcare, education, and a nurturing environment. Saving them may help secure these rights. |
MultipleNegativesRankingLoss with these parameters:{
"scale": 40,
"similarity_fct": "cos_sim"
}
overwrite_output_dir: Trueper_device_train_batch_size: 32learning_rate: 2.1456771788455288e-05num_train_epochs: 2warmup_ratio: 0.03254893834779507fp16: Truedataloader_num_workers: 4remove_unused_columns: Falseoverwrite_output_dir: Truedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2.1456771788455288e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.03254893834779507warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 4dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Falselabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss |
|---|---|---|
| 0.0337 | 20 | 0.2448 |
| 0.0675 | 40 | 0.1918 |
| 0.1012 | 60 | 0.14 |
| 0.1349 | 80 | 0.186 |
| 0.1686 | 100 | 0.1407 |
| 0.2024 | 120 | 0.1672 |
| 0.2361 | 140 | 0.1832 |
| 0.2698 | 160 | 0.116 |
| 0.3035 | 180 | 0.1341 |
| 0.3373 | 200 | 0.2118 |
| 0.3710 | 220 | 0.1274 |
| 0.4047 | 240 | 0.1993 |
| 0.4384 | 260 | 0.1561 |
| 0.4722 | 280 | 0.1517 |
| 0.5059 | 300 | 0.1635 |
| 0.5396 | 320 | 0.1646 |
| 0.5734 | 340 | 0.1337 |
| 0.6071 | 360 | 0.1406 |
| 0.6408 | 380 | 0.1114 |
| 0.6745 | 400 | 0.1314 |
| 0.7083 | 420 | 0.1481 |
| 0.7420 | 440 | 0.1932 |
| 0.7757 | 460 | 0.1568 |
| 0.8094 | 480 | 0.1319 |
| 0.8432 | 500 | 0.1536 |
| 0.8769 | 520 | 0.1462 |
| 0.9106 | 540 | 0.1336 |
| 0.9444 | 560 | 0.1453 |
| 0.9781 | 580 | 0.2005 |
| 1.0118 | 600 | 0.1265 |
| 1.0455 | 620 | 0.0702 |
| 1.0793 | 640 | 0.0739 |
| 1.1130 | 660 | 0.049 |
| 1.1467 | 680 | 0.0613 |
| 1.1804 | 700 | 0.0663 |
| 1.2142 | 720 | 0.0726 |
| 1.2479 | 740 | 0.0822 |
| 1.2816 | 760 | 0.0651 |
| 1.3153 | 780 | 0.0603 |
| 1.3491 | 800 | 0.0468 |
| 1.3828 | 820 | 0.061 |
| 1.4165 | 840 | 0.0891 |
| 1.4503 | 860 | 0.0607 |
| 1.4840 | 880 | 0.0673 |
| 1.5177 | 900 | 0.0728 |
| 1.5514 | 920 | 0.065 |
| 1.5852 | 940 | 0.0824 |
| 1.6189 | 960 | 0.0695 |
| 1.6526 | 980 | 0.0626 |
| 1.6863 | 1000 | 0.0525 |
| 1.7201 | 1020 | 0.0482 |
| 1.7538 | 1040 | 0.0968 |
| 1.7875 | 1060 | 0.0717 |
| 1.8212 | 1080 | 0.0704 |
| 1.8550 | 1100 | 0.0666 |
| 1.8887 | 1120 | 0.0841 |
| 1.9224 | 1140 | 0.0682 |
| 1.9562 | 1160 | 0.0584 |
| 1.9899 | 1180 | 0.0423 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}