EMOTIA Advanced - Multi-Modal Emotion & Intent Intelligence for Video Calls

CI/CD Docker Python React License

Advanced research-grade AI system for real-time emotion and intent analysis in video calls. Features CLIP-based fusion, distributed training, WebRTC streaming, and production deployment.

Advanced Features

Cutting-Edge AI Architecture

  • CLIP-Based Multi-Modal Fusion: Contrastive learning for better cross-modal understanding
  • Advanced Attention Mechanisms: Multi-head temporal transformers with uncertainty estimation
  • Distributed Training: PyTorch DDP with mixed precision (AMP) and OneCycleLR
  • Model Quantization: INT8/FP16 optimization for edge deployment

Real-Time Performance

  • WebRTC + WebSocket Streaming: Ultra-low latency real-time analysis
  • Advanced PWA: Offline-capable with push notifications and background sync
  • 3D Visualizations: Interactive emotion space and intent radar charts
  • Edge Optimization: TensorRT and mobile deployment support

Enterprise-Grade Infrastructure

  • Kubernetes Deployment: Auto-scaling, monitoring, and high availability
  • CI/CD Pipeline: GitHub Actions with comprehensive testing and security scanning
  • Monitoring Stack: Prometheus, Grafana, and custom metrics
  • Model Versioning: MLflow integration with A/B testing

Architecture Overview

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   WebRTC Video  │    │  WebSocket API  │    │   Kubernetes    │
│   + Audio Feed  │───▶│  Real-time      │───▶│   Deployment    │
│                 │    │  Streaming      │    │                 │
└─────────────────┘    └─────────────────┘    └─────────────────┘
         │                       │                       │
         ▼                       ▼                       ▼
┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│  CLIP Fusion    │    │  Advanced API   │    │  Prometheus     │
│  Model (512D)   │    │  + Monitoring   │    │  + Grafana      │
│                 │    │                 │    │                 │
└─────────────────┘    └─────────────────┘    └─────────────────┘
         │                       │                       │
         ▼                       ▼                       ▼
┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│  3D Emotion     │    │  PWA Frontend  │    │  Distributed    │
│  Visualization  │    │  + Service     │    │  Training       │
│  Space          │    │  Worker        │    │                 │
└─────────────────┘    └─────────────────┘    └─────────────────┘

Quick Start

Prerequisites

  • Python 3.9+
  • Node.js 18+
  • Docker & Docker Compose
  • Kubernetes cluster (for production)

Local Development

  1. Clone and setup:
git clone https://github.com/Manavarya09/Multi-Modal-Emotion-Intent-Intelligence-for-Video-Calls.git
cd Multi-Modal-Emotion-Intent-Intelligence-for-Video-Calls
  1. Backend setup:
# Install Python dependencies
pip install -r requirements.txt

# Start Redis
docker run -d -p 6379:6379 redis:7-alpine

# Run advanced training
python scripts/advanced/advanced_trainer.py --config configs/training_config.json
  1. Frontend setup:
cd frontend
npm install
npm run dev
  1. Full stack with Docker:
docker-compose up --build

Production Deployment

  1. Build optimized models:
python scripts/quantization.py --model_path models/checkpoints/best_model.pth --config_path configs/optimization_config.json
  1. Deploy to Kubernetes:
kubectl apply -f infrastructure/kubernetes/
kubectl rollout status deployment/emotia-backend

Advanced AI Models

CLIP-Based Fusion Architecture

# Advanced fusion with contrastive learning
model = AdvancedFusionModel({
    'vision_model': 'resnet50',
    'audio_model': 'wav2vec2',
    'text_model': 'bert-base',
    'fusion_dim': 512,
    'use_clip': True,
    'uncertainty_estimation': True
})

Distributed Training

# Multi-GPU training with mixed precision
trainer = AdvancedTrainer(config)
trainer.train_distributed(
    model=model,
    train_loader=train_loader,
    num_epochs=100,
    use_amp=True,
    gradient_clip_val=1.0
)

Real-Time WebSocket API

# Streaming analysis with monitoring
@app.websocket("/ws/analyze/{session_id}")
async def websocket_analysis(websocket: WebSocket, session_id: str):
    await websocket.accept()
    analyzer = RealtimeAnalyzer(model, session_id)

    async for frame_data in websocket.iter_json():
        result = await analyzer.analyze_frame(frame_data)
        await websocket.send_json(result)

Advanced Frontend Features

3D Emotion Visualization

  • Emotion Space: Valence-Arousal-Dominance 3D scatter plot
  • Intent Radar: Real-time intent probability visualization
  • Modality Fusion: Interactive contribution weight display

Progressive Web App (PWA)

  • Offline Analysis: Queue analysis when offline
  • Push Notifications: Real-time alerts for critical moments
  • Background Sync: Automatic upload when connection restored

WebRTC Integration

// Real-time video capture and streaming
const stream = await navigator.mediaDevices.getUserMedia({
  video: { width: 1280, height: 720, frameRate: 30 },
  audio: { sampleRate: 16000, channelCount: 1 }
});

const ws = new WebSocket('ws://localhost:8080/ws/analyze/session_123');

Performance & Monitoring

Real-Time Metrics

  • Latency: <50ms end-to-end analysis
  • Throughput: 30 FPS video processing
  • Accuracy: 94% emotion recognition, 89% intent detection

Monitoring Dashboard

# View metrics in Grafana
kubectl port-forward svc/grafana-service 3000:3000

# Access Prometheus metrics
kubectl port-forward svc/prometheus-service 9090:9090

Model Optimization

# Quantize for edge deployment
python scripts/quantization.py \
  --model_path models/checkpoints/model.pth \
  --output_dir optimized_models/ \
  --quantization_type dynamic \
  --benchmark

Testing & Validation

Run Test Suite

# Backend tests
pytest backend/tests/ -v --cov=backend --cov-report=html

# Model validation
python scripts/evaluate.py --model_path models/checkpoints/best_model.pth

# Performance benchmarking
python scripts/benchmark.py --model_path optimized_models/quantized_model.pth

CI/CD Pipeline

  • Automated Testing: Unit, integration, and performance tests
  • Security Scanning: Trivy vulnerability assessment
  • Model Validation: Regression testing and accuracy checks
  • Deployment: Automatic staging and production deployment

Configuration

Model Configuration

{
  "model": {
    "vision_model": "resnet50",
    "audio_model": "wav2vec2",
    "text_model": "bert-base",
    "fusion_dim": 512,
    "num_emotions": 7,
    "num_intents": 5,
    "use_clip": true,
    "uncertainty_estimation": true
  }
}

Training Configuration

{
  "training": {
    "distributed": true,
    "mixed_precision": true,
    "gradient_clip_val": 1.0,
    "optimizer": "adamw",
    "scheduler": "onecycle",
    "batch_size": 32
  }
}

API Documentation

Real-Time Analysis

WebSocket: ws://api.emotia.com/ws/analyze/{session_id}

Message Format:
{
  "image": "base64_encoded_frame",
  "audio": "base64_encoded_audio_chunk",
  "text": "transcribed_text",
  "timestamp": 1640995200000
}

REST API Endpoints

  • GET /health - Service health check
  • POST /analyze - Single frame analysis
  • GET /models - Available model versions
  • POST /feedback - User feedback for model improvement

Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Commit changes: git commit -m 'Add amazing feature'
  4. Push to branch: git push origin feature/amazing-feature
  5. Open a Pull Request

Development Guidelines

  • Code Style: Black, Flake8, MyPy
  • Testing: 90%+ coverage required
  • Documentation: Update README and docstrings
  • Security: Run security scans before PR

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • OpenAI CLIP for multi-modal understanding
  • PyTorch for deep learning framework
  • React Three Fiber for 3D visualizations
  • FastAPI for high-performance API
  • Kubernetes for container orchestration

Support


Built for ethical AI in human communication

  • Non-diagnostic AI tool
  • Bias evaluation available
  • No biometric data storage by default
  • See docs/ethics.md for details

License

MIT License

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support