Predicting the Unpredictable: Reproducible BiLSTM Forecasting of Incident Counts in the Global Terrorism Database (GTD)
Paper
•
2510.15136
•
Published
•
1
Bidirectional LSTM model for weekly terrorism event forecasting using 46 years of Global Terrorism Database (GTD) data.
Paper: Predicting the Unpredictable: Bidirectional LSTM Networks for Terrorism Event Forecasting
| Model | RMSE ↓ | MAE | R² | Improvement |
|---|---|---|---|---|
| BiLSTM (this model) | 6.38 | 3.82 | 0.556 | Baseline |
| LSTM+Attention | 9.19 | 5.37 | 0.264 | -30.6% |
| Linear Regression | 9.89 | 5.85 | 0.176 | -35.5% |
| SARIMA | 11.52 | 6.78 | -0.090 | -44.6% |
Key Achievement: 37% improvement over best classical baseline (Linear Regression)
Input(30, 13)
↓
Bidirectional LSTM(64) + Dropout(0.2) ↓ Bidirectional LSTM(32) + Dropout(0.2) ↓ Dense(32, ReLU) + Dropout(0.2) ↓ Dense(1, Linear)
import tensorflow as tf
from huggingface_hub import hf_hub_download
# Download model
model_path = hf_hub_download(
repo_id="Davidavid4/bilstm-terrorism-forecasting-gtd",
filename="bidirectional_lstm_best.h5"
)
# Load model
model = tf.keras.models.load_model(model_path)
# Prepare input: shape (batch_size, 30, 13)
# - 30 weeks of historical data
# - 13 features per week
# Make predictions
predictions = model.predict(X_test)