polar-pond-221

This model is a fine-tuned version of facebook/convnextv2-base-1k-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1960
  • Accuracy: 0.9688
  • Precision: 0.9703
  • Recall: 0.9688
  • F1: 0.9683
  • Roc Auc: 0.9987

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc Auc
1.3843 1.0 17 1.3585 0.4896 0.2458 0.4896 0.3273 0.7094
1.3004 2.0 34 1.2273 0.4180 0.5441 0.4180 0.4640 0.7541
1.0841 3.0 51 1.1291 0.5430 0.5094 0.5430 0.4415 0.8077
0.8792 4.0 68 0.7692 0.4831 0.6620 0.4831 0.5065 0.7978
0.7057 5.0 85 0.7192 0.6510 0.6349 0.6510 0.6354 0.8585
0.6424 6.0 102 0.6292 0.5299 0.6840 0.5299 0.5244 0.8628
0.5829 7.0 119 0.5684 0.5898 0.7109 0.5898 0.6047 0.8724
0.4313 8.0 136 0.3756 0.7930 0.7945 0.7930 0.7936 0.9476
0.2881 9.0 153 0.2655 0.8516 0.8713 0.8516 0.8530 0.9716
0.1871 10.0 170 0.3171 0.8060 0.8729 0.8060 0.8089 0.9834
0.158 11.0 187 0.1419 0.9440 0.9441 0.9440 0.9439 0.9921
0.1137 12.0 204 0.1567 0.9245 0.9283 0.9245 0.9232 0.9932
0.0658 13.0 221 0.1298 0.9453 0.9462 0.9453 0.9455 0.9944
0.0696 14.0 238 0.1345 0.9466 0.9470 0.9466 0.9467 0.9948
0.043 15.0 255 0.1541 0.9674 0.9684 0.9674 0.9674 0.9972
0.0393 16.0 272 0.0805 0.9622 0.9633 0.9622 0.9624 0.9973
0.0339 17.0 289 0.1905 0.9466 0.9522 0.9466 0.9469 0.9966
0.0466 18.0 306 0.1001 0.9401 0.9468 0.9401 0.9413 0.9975
0.0322 19.0 323 0.0643 0.9792 0.9800 0.9792 0.9792 0.9990
0.0184 20.0 340 0.1204 0.9844 0.9846 0.9844 0.9842 0.9985
0.0201 21.0 357 0.0876 0.9779 0.9786 0.9779 0.9778 0.9992
0.0212 22.0 374 0.1340 0.9570 0.9611 0.9570 0.9574 0.9985
0.0168 23.0 391 0.0807 0.9661 0.9689 0.9661 0.9664 0.9992
0.0158 24.0 408 0.1210 0.9740 0.9745 0.9740 0.9738 0.9983
0.0135 25.0 425 0.1960 0.9688 0.9703 0.9688 0.9683 0.9987

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.7.0+cpu
  • Datasets 3.6.0
  • Tokenizers 0.21.0
Downloads last month
6
Safetensors
Model size
87.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for BeckerAnas/polar-pond-221

Finetuned
(14)
this model