immutable_reality_engine / Structural inquiry system 2.5
upgraedd's picture
Create Structural inquiry system 2.5
626bff3 verified
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
STRUCTURAL INQUIRY SYSTEM v2.5
Engineering-Focused Knowledge Discovery with Concrete Improvements
"""
from enum import Enum
from dataclasses import dataclass, field
from typing import List, Dict, Any, Optional, Tuple, Mapping, Callable
import hashlib
from datetime import datetime
from types import MappingProxyType
import numpy as np
# === CORE SYMBOLS ===
KNOWLEDGE_NODE = "●"
PATTERN_RECOGNITION = "⟁"
INQUIRY_MARKER = "?"
VALIDATION_SYMBOL = "✓"
# === KNOWLEDGE STATE TYPES ===
class KnowledgeStateType(Enum):
"""Knowledge state types with clear semantics"""
PATTERN_DETECTION = "pattern_detection"
DATA_CORRELATION = "data_correlation"
CONTEXTUAL_ALIGNMENT = "contextual_alignment"
METHODOLOGICAL_STRUCTURE = "methodological_structure"
SOURCE_VERIFICATION = "source_verification"
TEMPORAL_CONSISTENCY = "temporal_consistency"
CROSS_DOMAIN_SYNTHESIS = "cross_domain_synthesis"
KNOWLEDGE_GAP_IDENTIFICATION = "knowledge_gap_identification"
@dataclass(frozen=True)
class KnowledgeState:
"""Immutable knowledge state with provenance tracking"""
state_id: str
state_type: KnowledgeStateType
confidence_score: float
confidence_provenance: str # Track where confidence came from
methodological_rigor: float
data_patterns: Tuple[float, ...]
knowledge_domains: Tuple[str, ...]
temporal_markers: Tuple[str, ...]
research_constraints: Tuple[str, ...]
structural_description: str
validation_signature: str
state_hash: str = field(init=False)
def __post_init__(self):
hash_input = f"{self.state_id}:{self.state_type.value}:{self.confidence_score}:"
hash_input += f"{self.confidence_provenance}:{self.methodological_rigor}:"
hash_input += ":".join(str(v) for v in self.data_patterns[:10])
hash_input += ":".join(self.knowledge_domains)
state_hash = hashlib.sha3_512(hash_input.encode()).hexdigest()[:32]
object.__setattr__(self, 'state_hash', state_hash)
# === INQUIRY CATEGORIES ===
class InquiryCategory(Enum):
"""Inquiry categories with clear prioritization semantics"""
CONFIDENCE_DISCREPANCY_ANALYSIS = "confidence_discrepancy_analysis"
METHODOLOGICAL_CONSISTENCY_CHECK = "methodological_consistency_check"
PATTERN_ANOMALY_DETECTION = "pattern_anomaly_detection"
TEMPORAL_ALIGNMENT_VALIDATION = "temporal_alignment_validation"
SOURCE_RELIABILITY_ASSESSMENT = "source_reliability_assessment"
CROSS_REFERENCE_VALIDATION = "cross_reference_validation"
KNOWLEDGE_COMPLETENESS_EVALUATION = "knowledge_completeness_evaluation"
# === PLUGGABLE ANALYSIS INTERFACE ===
class AnalysisResult:
"""Structured analysis result for inquiry generation"""
def __init__(
self,
category: InquiryCategory,
basis_code: str,
basis_kwargs: Dict[str, Any],
verification_requirements: List[str],
investigation_confidence: float,
research_completion_estimate: float,
priority_score: float
):
self.category = category
self.basis_code = basis_code
self.basis_kwargs = basis_kwargs
self.verification_requirements = verification_requirements
self.investigation_confidence = investigation_confidence
self.research_completion_estimate = research_completion_estimate
self.priority_score = priority_score
class InquiryAnalyzer:
"""Protocol for pluggable analysis"""
def analyze(self, state: KnowledgeState) -> List[AnalysisResult]:
"""Analyze state and return multiple potential inquiries"""
raise NotImplementedError
# === DEFAULT ANALYZER IMPLEMENTATION ===
class DefaultInquiryAnalyzer(InquiryAnalyzer):
"""Default analyzer that generates multiple inquiry candidates"""
def __init__(self, basis_templates: Dict[str, Dict[str, Any]]):
self.basis_templates = basis_templates
def analyze(self, state: KnowledgeState) -> List[AnalysisResult]:
"""Generate multiple inquiry candidates from state"""
results = []
# Check multiple independent criteria
if state.confidence_score < 0.7:
results.append(self._confidence_analysis(state))
if state.methodological_rigor < 0.65:
results.append(self._methodological_analysis(state))
if len(state.data_patterns) < 8:
results.append(self._pattern_analysis(state))
if len(state.temporal_markers) < 3:
results.append(self._temporal_analysis(state))
if len(state.knowledge_domains) > 2:
results.append(self._cross_domain_analysis(state))
# Always provide at least one analysis
if not results:
results.append(self._default_analysis(state))
return results
def _confidence_analysis(self, state: KnowledgeState) -> AnalysisResult:
"""Analyze confidence discrepancies"""
confidence_factor = max(0.1, 0.8 - state.confidence_score)
return AnalysisResult(
category=InquiryCategory.CONFIDENCE_DISCREPANCY_ANALYSIS,
basis_code="CONFIDENCE_ANOMALY_INVESTIGATION",
basis_kwargs={
"score": state.confidence_score * 100,
"expected": 75.0,
"provenance": state.confidence_provenance
},
verification_requirements=[
"statistical_reanalysis",
"source_review",
"methodology_audit"
],
investigation_confidence=confidence_factor,
research_completion_estimate=self._calculate_completion_estimate(3, confidence_factor),
priority_score=self._calculate_priority_score(confidence_factor, 0.9)
)
def _methodological_analysis(self, state: KnowledgeState) -> AnalysisResult:
"""Analyze methodological issues"""
rigor_factor = max(0.1, 0.7 - state.methodological_rigor)
return AnalysisResult(
category=InquiryCategory.METHODOLOGICAL_CONSISTENCY_CHECK,
basis_code="METHODOLOGICAL_CONSISTENCY_QUESTION",
basis_kwargs={
"rigor": state.methodological_rigor * 100,
"method_type": "research_protocol"
},
verification_requirements=[
"protocol_review",
"reproducibility_check",
"peer_validation"
],
investigation_confidence=rigor_factor,
research_completion_estimate=self._calculate_completion_estimate(3, rigor_factor),
priority_score=self._calculate_priority_score(rigor_factor, 0.8)
)
def _pattern_analysis(self, state: KnowledgeState) -> AnalysisResult:
"""Analyze pattern anomalies"""
pattern_factor = len(state.data_patterns) / 10.0
return AnalysisResult(
category=InquiryCategory.PATTERN_ANOMALY_DETECTION,
basis_code="PATTERN_DEVIATION_ANALYSIS",
basis_kwargs={
"pattern_completeness": pattern_factor * 100,
"expected_patterns": 8
},
verification_requirements=[
"pattern_completeness_check",
"data_collection_review",
"statistical_validation"
],
investigation_confidence=1.0 - pattern_factor,
research_completion_estimate=self._calculate_completion_estimate(3, pattern_factor),
priority_score=self._calculate_priority_score(1.0 - pattern_factor, 0.7)
)
def _temporal_analysis(self, state: KnowledgeState) -> AnalysisResult:
"""Analyze temporal issues"""
temporal_factor = len(state.temporal_markers) / 3.0
return AnalysisResult(
category=InquiryCategory.TEMPORAL_ALIGNMENT_VALIDATION,
basis_code="TEMPORAL_CONSISTENCY_CHECK",
basis_kwargs={
"marker_count": len(state.temporal_markers),
"expected_markers": 3
},
verification_requirements=[
"temporal_sequence_verification",
"chronological_consistency_check"
],
investigation_confidence=1.0 - temporal_factor,
research_completion_estimate=self._calculate_completion_estimate(2, temporal_factor),
priority_score=self._calculate_priority_score(1.0 - temporal_factor, 0.6)
)
def _cross_domain_analysis(self, state: KnowledgeState) -> AnalysisResult:
"""Analyze cross-domain issues"""
domain_factor = min(1.0, len(state.knowledge_domains) / 5.0)
return AnalysisResult(
category=InquiryCategory.CROSS_REFERENCE_VALIDATION,
basis_code="CROSS_DOMAIN_ALIGNMENT_CHECK",
basis_kwargs={
"domain_count": len(state.knowledge_domains),
"domains": list(state.knowledge_domains)[:3]
},
verification_requirements=[
"cross_domain_correlation",
"independent_verification"
],
investigation_confidence=domain_factor,
research_completion_estimate=self._calculate_completion_estimate(2, domain_factor),
priority_score=self._calculate_priority_score(domain_factor, 0.5)
)
def _default_analysis(self, state: KnowledgeState) -> AnalysisResult:
"""Default analysis for well-formed states"""
return AnalysisResult(
category=InquiryCategory.KNOWLEDGE_COMPLETENESS_EVALUATION,
basis_code="BASELINE_VERIFICATION",
basis_kwargs={
"confidence_score": state.confidence_score * 100,
"rigor_score": state.methodological_rigor * 100
},
verification_requirements=["comprehensive_review"],
investigation_confidence=0.3,
research_completion_estimate=0.9,
priority_score=2.0 # Low priority baseline check
)
def _calculate_completion_estimate(self, requirement_count: int, confidence: float) -> float:
"""Calculate research completion estimate"""
base = 0.5
requirement_impact = 0.9 ** requirement_count
confidence_impact = confidence * 0.4
return min(0.95, base * requirement_impact + confidence_impact)
def _calculate_priority_score(self, investigation_confidence: float, weight: float) -> float:
"""Calculate priority score with clear semantics"""
base_score = investigation_confidence * weight
return round(base_score * 10, 2)
# === INQUIRY BASIS TEMPLATES ===
INQUIRY_BASIS_TEMPLATES = {
"CONFIDENCE_ANOMALY_INVESTIGATION": {
"template": "Confidence score of {score}% ({provenance}) differs from expected baseline of {expected}%",
"investigation_focus": "confidence_validation"
},
"METHODOLOGICAL_CONSISTENCY_QUESTION": {
"template": "Methodological rigor rating of {rigor}% suggests review of {method_type} may be beneficial",
"investigation_focus": "methodological_review"
},
"PATTERN_DEVIATION_ANALYSIS": {
"template": "Pattern completeness at {pattern_completeness}% with {expected_patterns} expected patterns",
"investigation_focus": "pattern_analysis"
},
"TEMPORAL_CONSISTENCY_CHECK": {
"template": "Temporal markers: {marker_count} present, {expected_markers} expected",
"investigation_focus": "temporal_validation"
},
"CROSS_DOMAIN_ALIGNMENT_CHECK": {
"template": "Cross-domain analysis across {domain_count} domains: {domains}",
"investigation_focus": "cross_domain_validation"
},
"BASELINE_VERIFICATION": {
"template": "Baseline verification: confidence={confidence_score}%, rigor={rigor_score}%",
"investigation_focus": "comprehensive_review"
}
}
# === INQUIRY ARTIFACT ===
@dataclass(frozen=True)
class InquiryArtifact:
"""Deterministic inquiry artifact with robust priority calculation"""
artifact_id: str
source_state_hash: str
inquiry_category: InquiryCategory
investigation_priority: int # 1-10 scale with clear semantics
knowledge_domains_involved: Tuple[str, ...]
basis_code: str
inquiry_description: str
verification_requirements: Tuple[str, ...]
investigation_confidence: float
research_completion_estimate: float
confidence_provenance: str
artifact_hash: str
creation_context: 'CreationContext'
@classmethod
def create(
cls,
knowledge_state: KnowledgeState,
analysis_result: AnalysisResult,
basis_templates: Dict[str, Dict[str, Any]],
creation_context: 'CreationContext'
) -> 'InquiryArtifact':
"""Create inquiry artifact with deterministic hash"""
# Format inquiry description
template_data = basis_templates.get(analysis_result.basis_code, {})
description_template = template_data.get("template", "Analysis required")
inquiry_description = description_template.format(**analysis_result.basis_kwargs)
# Calculate deterministic priority (1-10)
priority_value = max(1, min(10, int(round(analysis_result.priority_score))))
# Generate deterministic hash
hash_input = f"{knowledge_state.state_hash}:{analysis_result.category.value}:"
hash_input += f"{analysis_result.basis_code}:{priority_value}:"
hash_input += ":".join(analysis_result.verification_requirements)
hash_input += creation_context.context_hash
artifact_hash = hashlib.sha3_512(hash_input.encode()).hexdigest()[:32]
artifact_id = f"inq_{artifact_hash[:16]}"
return cls(
artifact_id=artifact_id,
source_state_hash=knowledge_state.state_hash,
inquiry_category=analysis_result.category,
investigation_priority=priority_value,
knowledge_domains_involved=knowledge_state.knowledge_domains,
basis_code=analysis_result.basis_code,
inquiry_description=inquiry_description,
verification_requirements=tuple(analysis_result.verification_requirements),
investigation_confidence=analysis_result.investigation_confidence,
research_completion_estimate=analysis_result.research_completion_estimate,
confidence_provenance=knowledge_state.confidence_provenance,
artifact_hash=artifact_hash,
creation_context=creation_context
)
def reference_information(self) -> Mapping[str, Any]:
"""Immutable reference information"""
return MappingProxyType({
"artifact_id": self.artifact_id,
"source_state": self.source_state_hash[:12],
"inquiry_category": self.inquiry_category.value,
"investigation_priority": self.investigation_priority,
"priority_semantics": self._priority_semantics(),
"knowledge_domains": list(self.knowledge_domains_involved),
"basis": {
"code": self.basis_code,
"description": self.inquiry_description,
"confidence_provenance": self.confidence_provenance
},
"verification_requirements": list(self.verification_requirements),
"investigation_confidence": round(self.investigation_confidence, 3),
"research_completion_estimate": round(self.research_completion_estimate, 3),
"artifact_hash": self.artifact_hash,
"creation_context": self.creation_context.reference_data()
})
def _priority_semantics(self) -> str:
"""Document priority semantics"""
if self.investigation_priority >= 9:
return "critical_immediate_attention"
elif self.investigation_priority >= 7:
return "high_priority_review"
elif self.investigation_priority >= 5:
return "moderate_priority"
elif self.investigation_priority >= 3:
return "low_priority_backlog"
else:
return "informational_only"
# === CREATION CONTEXT ===
@dataclass(frozen=True)
class CreationContext:
"""Immutable creation context"""
system_version: str
generation_timestamp: str
research_environment: str
deterministic_seed: Optional[int]
context_hash: str = field(init=False)
def __post_init__(self):
hash_input = f"{self.system_version}:{self.generation_timestamp}:"
hash_input += f"{self.research_environment}:{self.deterministic_seed or 'none'}"
context_hash = hashlib.sha3_512(hash_input.encode()).hexdigest()[:32]
object.__setattr__(self, 'context_hash', context_hash)
@classmethod
def create(
cls,
research_environment: str = "knowledge_discovery_system",
deterministic_seed: Optional[int] = None,
clock_source: Callable[[], datetime] = datetime.now
) -> 'CreationContext':
"""Factory method with optional determinism"""
return cls(
system_version="structural_inquiry_v2.5",
generation_timestamp=clock_source().isoformat(),
research_environment=research_environment,
deterministic_seed=deterministic_seed
)
def reference_data(self) -> Mapping[str, Any]:
return MappingProxyType({
"system_version": self.system_version,
"generation_timestamp": self.generation_timestamp,
"research_environment": self.research_environment,
"deterministic_mode": self.deterministic_seed is not None,
"context_hash": self.context_hash[:12]
})
# === INQUIRY GENERATOR ===
class InquiryGenerator:
"""
Deterministic inquiry generator with pluggable analysis
"""
def __init__(
self,
analyzer: Optional[InquiryAnalyzer] = None,
creation_context: Optional[CreationContext] = None,
deterministic_seed: Optional[int] = None
):
self.analyzer = analyzer or DefaultInquiryAnalyzer(INQUIRY_BASIS_TEMPLATES)
self.creation_context = creation_context or CreationContext.create(
deterministic_seed=deterministic_seed
)
self.generated_inquiries: List[InquiryArtifact] = []
# Set deterministic seed if provided
if deterministic_seed is not None:
np.random.seed(deterministic_seed)
def generate_inquiries(
self,
knowledge_states: Tuple[KnowledgeState, ...],
confidence_threshold: float = 0.7
) -> Tuple[InquiryArtifact, ...]:
"""Generate inquiries from knowledge states"""
inquiries = []
for state in knowledge_states:
# Use analyzer to get multiple potential inquiries
analysis_results = self.analyzer.analyze(state)
for result in analysis_results:
# Only generate inquiries that meet threshold
if result.investigation_confidence >= confidence_threshold:
inquiry = InquiryArtifact.create(
knowledge_state=state,
analysis_result=result,
basis_templates=INQUIRY_BASIS_TEMPLATES,
creation_context=self.creation_context
)
inquiries.append(inquiry)
self.generated_inquiries.append(inquiry)
return tuple(inquiries)
# === RESEARCH SYSTEM INTERFACE ===
class ResearchSystem:
"""Abstract research system interface"""
async def research(self, topic: str, **kwargs) -> Dict[str, Any]:
"""Conduct research on topic (must be implemented)"""
raise NotImplementedError
# === INTEGRATED KNOWLEDGE DISCOVERY ===
class IntegratedKnowledgeDiscovery:
"""
Integrated system with clear async boundaries and determinism
"""
def __init__(
self,
research_system: ResearchSystem,
deterministic_seed: Optional[int] = None
):
"""
Initialize with concrete research system
Args:
research_system: Must implement ResearchSystem interface
deterministic_seed: Optional seed for reproducible results
"""
if not isinstance(research_system, ResearchSystem):
raise TypeError("research_system must implement ResearchSystem interface")
self.research_system = research_system
self.deterministic_seed = deterministic_seed
self.inquiry_generator = InquiryGenerator(deterministic_seed=deterministic_seed)
self.discovery_history: List[Dict[str, Any]] = []
async def conduct_research_with_inquiries(
self,
research_topic: str,
confidence_threshold: float = 0.7,
**research_kwargs
) -> Dict[str, Any]:
"""Conduct research and generate knowledge inquiries"""
# 1. Conduct research using the provided system
research_result = await self.research_system.research(research_topic, **research_kwargs)
# 2. Convert to knowledge state
knowledge_state = self._convert_to_knowledge_state(research_result)
# 3. Generate inquiries
knowledge_states = (knowledge_state,)
inquiry_artifacts = self.inquiry_generator.generate_inquiries(
knowledge_states,
confidence_threshold
)
# 4. Create inquiry collection
inquiry_collection = {
"collection_id": f"inq_coll_{hashlib.sha256(knowledge_state.state_hash.encode()).hexdigest()[:16]}",
"research_topic": research_topic,
"knowledge_state_hash": knowledge_state.state_hash[:12],
"inquiry_count": len(inquiry_artifacts),
"generation_timestamp": datetime.utcnow().isoformat(),
"confidence_threshold": confidence_threshold,
"deterministic_mode": self.deterministic_seed is not None,
"inquiries": [i.reference_information() for i in inquiry_artifacts]
}
# 5. Store and return
self.discovery_history.append({
"research_topic": research_topic,
"research_result": research_result,
"knowledge_state": knowledge_state,
"inquiry_collection": inquiry_collection,
"inquiry_artifacts": inquiry_artifacts
})
return {
"research_topic": research_topic,
"research_summary": {
"confidence_score": research_result.get("confidence_score", 0.5),
"methodological_rigor": research_result.get("methodological_rigor", 0.5),
"domains": research_result.get("knowledge_domains", [])
},
"inquiry_generation": {
"inquiries_generated": len(inquiry_artifacts),
"inquiry_collection_id": inquiry_collection["collection_id"],
"priority_distribution": self._summarize_priorities(inquiry_artifacts),
"confidence_threshold_met": len(inquiry_artifacts) > 0
}
}
def _convert_to_knowledge_state(
self,
research_result: Dict[str, Any]
) -> KnowledgeState:
"""Convert research result to knowledge state"""
# Extract with provenance tracking
confidence_score = research_result.get("confidence_score", 0.5)
confidence_provenance = research_result.get(
"confidence_provenance",
"derived_from_research"
)
# Determine state type
if confidence_score < 0.6:
state_type = KnowledgeStateType.SOURCE_VERIFICATION
elif "pattern" in str(research_result.get("structural_description", "")).lower():
state_type = KnowledgeStateType.PATTERN_DETECTION
elif len(research_result.get("knowledge_domains", [])) > 2:
state_type = KnowledgeStateType.CROSS_DOMAIN_SYNTHESIS
else:
state_type = KnowledgeStateType.DATA_CORRELATION
# Generate patterns deterministically
if self.deterministic_seed is not None:
# Deterministic pattern generation
pattern_seed = hash(f"{self.deterministic_seed}:{research_result.get('content_hash', '')}")
np.random.seed(pattern_seed % (2**32))
data_patterns = tuple(np.random.randn(8).tolist())
else:
# Use provided pattern or generate default
provided_patterns = research_result.get("data_patterns", [])
data_patterns = tuple(provided_patterns[:8]) if provided_patterns else tuple(np.sin(np.arange(8) * 0.785).tolist())
# Generate structural description
structural_description = self._generate_structural_description(research_result)
# Generate validation signature
validation_signature = hashlib.sha3_512(
f"{research_result.get('content_hash', '')}:{self.deterministic_seed or 'stochastic'}".encode()
).hexdigest()[:32]
return KnowledgeState(
state_id=f"knowledge_state_{research_result.get('content_hash', 'unknown')[:12]}",
state_type=state_type,
confidence_score=confidence_score,
confidence_provenance=confidence_provenance,
methodological_rigor=research_result.get("methodological_rigor", 0.5),
data_patterns=data_patterns,
knowledge_domains=tuple(research_result.get("knowledge_domains", ["general"])),
temporal_markers=(
research_result.get("timestamp", ""),
datetime.utcnow().isoformat()
),
research_constraints=self._extract_constraints(research_result),
structural_description=structural_description,
validation_signature=validation_signature
)
def _generate_structural_description(
self,
research_result: Dict[str, Any]
) -> str:
"""Generate structural description"""
components = []
confidence = research_result.get("confidence_score", 0.5)
provenance = research_result.get("confidence_provenance", "unstated")
if confidence < 0.6:
components.append(f"Low confidence ({confidence:.2f}) from {provenance}")
elif confidence > 0.8:
components.append(f"High confidence ({confidence:.2f}) from {provenance}")
rigor = research_result.get("methodological_rigor", 0.5)
if rigor < 0.6:
components.append(f"Methodological rigor: {rigor:.2f}")
domains = research_result.get("knowledge_domains", [])
if len(domains) > 2:
components.append(f"Cross-domain: {len(domains)} domains")
if not components:
components.append("Standard research structure")
return f"{KNOWLEDGE_NODE} " + "; ".join(components)
def _extract_constraints(
self,
research_result: Dict[str, Any]
) -> Tuple[str, ...]:
"""Extract research constraints"""
constraints = []
if research_result.get("confidence_score", 0) < 0.7:
constraints.append("confidence_verification_needed")
if research_result.get("methodological_rigor", 0) < 0.6:
constraints.append("methodology_review_recommended")
if not research_result.get("source_references", []):
constraints.append("source_corroboration_required")
if not constraints:
constraints.append("standard_verification_protocol")
return tuple(constraints)
def _summarize_priorities(
self,
inquiry_artifacts: Tuple[InquiryArtifact, ...]
) -> Dict[str, Any]:
"""Summarize inquiry priorities with clear semantics"""
if not inquiry_artifacts:
return {"message": "No inquiries generated", "priority_levels": {}}
priority_summary = {}
for artifact in inquiry_artifacts:
priority = artifact.investigation_priority
if priority not in priority_summary:
priority_summary[priority] = {
"count": 0,
"domains": set(),
"semantics": artifact._priority_semantics()
}
priority_summary[priority]["count"] += 1
priority_summary[priority]["domains"].update(artifact.knowledge_domains_involved)
# Convert sets to lists
for priority in priority_summary:
priority_summary[priority]["domains"] = list(priority_summary[priority]["domains"])
return {
"total_priorities": len(priority_summary),
"highest_priority": max(priority_summary.keys()),
"priority_distribution": priority_summary
}
def get_statistics(self) -> Dict[str, Any]:
"""Get system statistics"""
total_inquiries = len(self.inquiry_generator.generated_inquiries)
# Calculate category distribution
category_counts = {}
for inquiry in self.inquiry_generator.generated_inquiries:
category = inquiry.inquiry_category.value
category_counts[category] = category_counts.get(category, 0) + 1
# Calculate average metrics
if total_inquiries > 0:
avg_confidence = np.mean([i.investigation_confidence for i in self.inquiry_generator.generated_inquiries])
avg_priority = np.mean([i.investigation_priority for i in self.inquiry_generator.generated_inquiries])
else:
avg_confidence = 0.0
avg_priority = 0.0
return {
"system": "Integrated Knowledge Discovery v2.5",
"research_sessions": len(self.discovery_history),
"total_inquiries_generated": total_inquiries,
"category_distribution": category_counts,
"average_investigation_confidence": round(float(avg_confidence), 3),
"average_investigation_priority": round(float(avg_priority), 1),
"deterministic_mode": self.deterministic_seed is not None,
"engineering_properties": {
"immutable_data_structures": True,
"deterministic_hashes": True,
"pluggable_analyzers": True,
"clear_async_boundaries": True,
"priority_semantics_documented": True
}
}
# === CONCRETE RESEARCH SYSTEM EXAMPLE ===
class ConcreteResearchSystem(ResearchSystem):
"""Example research system with proper async implementation"""
def __init__(self, deterministic_seed: Optional[int] = None):
self.deterministic_seed = deterministic_seed
if deterministic_seed is not None:
np.random.seed(deterministic_seed)
async def research(self, topic: str, **kwargs) -> Dict[str, Any]:
"""Conduct research (simulated for example)"""
# Simulate async research delay
import asyncio
await asyncio.sleep(0.1) # Simulate network/processing
# Generate deterministic or random results
if self.deterministic_seed is not None:
# Deterministic based on topic
topic_hash = hash(topic) % 1000
confidence = 0.5 + (topic_hash % 500) / 1000 # 0.5-1.0
rigor = 0.4 + (topic_hash % 600) / 1000 # 0.4-1.0
else:
# Random results
confidence = np.random.random() * 0.3 + 0.5 # 0.5-0.8
rigor = np.random.random() * 0.4 + 0.4 # 0.4-0.8
return {
"topic": topic,
"content_hash": hashlib.sha256(topic.encode()).hexdigest()[:32],
"confidence_score": confidence,
"confidence_provenance": "simulated_analysis",
"methodological_rigor": rigor,
"knowledge_domains": self._identify_domains(topic),
"structural_description": f"Research on {topic}",
"timestamp": datetime.utcnow().isoformat(),
"data_patterns": np.sin(np.arange(10) * 0.628).tolist(),
"source_references": [f"ref_{i}" for i in range(np.random.randint(1, 4))]
}
def _identify_domains(self, topic: str) -> List[str]:
"""Identify domains from topic"""
domains = []
topic_lower = topic.lower()
if any(word in topic_lower for word in ["quantum", "physics"]):
domains.append("physics")
if any(word in topic_lower for word in ["history", "ancient"]):
domains.append("history")
if any(word in topic_lower for word in ["consciousness", "mind"]):
domains.append("psychology")
if any(word in topic_lower for word in ["pattern", "analysis"]):
domains.append("mathematics")
return domains if domains else ["interdisciplinary"]
# === TEST UTILITIES ===
def run_deterministic_test() -> bool:
"""Test deterministic reproducibility"""
print("Testing deterministic reproducibility...")
# Run with same seed
research_system1 = ConcreteResearchSystem(deterministic_seed=42)
system1 = IntegratedKnowledgeDiscovery(research_system1, deterministic_seed=42)
research_system2 = ConcreteResearchSystem(deterministic_seed=42)
system2 = IntegratedKnowledgeDiscovery(research_system2, deterministic_seed=42)
import asyncio
# Run same research
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result1 = loop.run_until_complete(
system1.conduct_research_with_inquiries("Test topic")
)
result2 = loop.run_until_complete(
system2.conduct_research_with_inquiries("Test topic")
)
loop.close()
# Compare results
inquiries1 = result1["inquiry_generation"]["inquiries_generated"]
inquiries2 = result2["inquiry_generation"]["inquiries_generated"]
print(f" System 1 inquiries: {inquiries1}")
print(f" System 2 inquiries: {inquiries2}")
print(f" Results identical: {inquiries1 == inquiries2}")
return inquiries1 == inquiries2
# === MAIN ===
async def main():
"""Demonstrate the system"""
print(f"""
{'='*70}
STRUCTURAL INQUIRY SYSTEM v2.5
Engineering-Focused Knowledge Discovery
{'='*70}
""")
# Run deterministic test
if run_deterministic_test():
print(f"\n{VALIDATION_SYMBOL} Deterministic reproducibility verified")
else:
print(f"\n{INQUIRY_MARKER} Non-deterministic behavior detected")
# Create and run system
research_system = ConcreteResearchSystem()
discovery_system = IntegratedKnowledgeDiscovery(research_system)
topics = [
"Quantum pattern analysis techniques",
"Historical methodology consistency",
"Cross-domain verification protocols"
]
for i, topic in enumerate(topics, 1):
print(f"\n{PATTERN_RECOGNITION} RESEARCH SESSION {i}: {topic}")
print(f"{'-'*60}")
result = await discovery_system.conduct_research_with_inquiries(
topic,
confidence_threshold=0.6
)
inquiries = result["inquiry_generation"]["inquiries_generated"]
priorities = result["inquiry_generation"]["priority_distribution"]
print(f" {VALIDATION_SYMBOL} Research completed")
print(f" {KNOWLEDGE_NODE} Inquiries generated: {inquiries}")
if inquiries > 0:
for priority, data in priorities.get("priority_distribution", {}).items():
semantics = data.get("semantics", "unknown")
print(f" Priority {priority} ({semantics}): {data['count']} inquiries")
# Display statistics
stats = discovery_system.get_statistics()
print(f"\n{'='*70}")
print("SYSTEM STATISTICS")
print(f"{'='*70}")
print(f"\nResearch sessions: {stats['research_sessions']}")
print(f"Total inquiries: {stats['total_inquiries_generated']}")
print(f"\nEngineering properties:")
for prop, value in stats["engineering_properties"].items():
status = "✓" if value else "✗"
print(f" {status} {prop}: {value}")
if __name__ == "__main__":
import asyncio
try:
asyncio.run(main())
except KeyboardInterrupt:
print(f"\n\n{KNOWLEDGE_NODE} System shutdown complete.")