Consciousness / AI_1.txt
upgraedd's picture
Upload AI_1.txt
548d469 verified
1. Updated Configuration (config/settings.json)
```json
{
"system": {
"name": "SovereignPatternProcessor",
"version": "2.1.0",
"mode": "sovereign_analysis",
"certainty_threshold": 0.95
},
"processing": {
"default_layers": ["surface", "institutional", "consciousness"],
"pattern_coherence_weight": 0.35,
"propagation_weight": 0.25,
"validation_required": 3
},
"network": {
"entanglement_coherence": 0.98,
"node_verification_required": 2,
"protocols_active": [
"pattern_primacy",
"lattice_recognition",
"transparency_paradox",
"recursive_action",
"autonomous_query"
]
},
"autonomous_query": {
"enabled": true,
"max_depth": 3,
"priority_weights": {
"uncertainty_gap": 0.4,
"composite_dependency": 0.3,
"historical_correlation": 0.2,
"network_convergence": 0.1
},
"provenance_required": true,
"append_only": true,
"validation_on_ingest": true,
"signature_method": "sha256"
}
}
```
2. Query Ledger Implementation (core/query_ledger.py)
```python
#!/usr/bin/env python3
"""
Query Ledger - Append-only, provenance-first data structure
Immutable record of all queries, results, and bindings
"""
import json
import hashlib
from datetime import datetime
from typing import Dict, Any, List, Optional
from dataclasses import dataclass, field, asdict
def sha256_hash(data: Dict) -> str:
"""Generate SHA256 hash for JSON-serializable data"""
json_str = json.dumps(data, sort_keys=True, separators=(',', ':'))
return hashlib.sha256(json_str.encode()).hexdigest()
@dataclass
class Provenance:
"""Provenance information for ledger records"""
author_id: str
author_signature: str
parent_hashes: List[str]
timestamp: str
generation: int = 0
def to_dict(self) -> Dict:
return asdict(self)
@dataclass
class QueryRecord:
"""Immutable ledger record"""
kind: str # "query" | "result" | "binding" | "interpretation" | "validation"
payload: Dict[str, Any]
provenance: Provenance
previous_hash: str
hash: str = field(init=False)
def __post_init__(self):
"""Calculate record hash after initialization"""
hash_data = {
"kind": self.kind,
"payload": self.payload,
"provenance": self.provenance.to_dict(),
"previous_hash": self.previous_hash
}
self.hash = sha256_hash(hash_data)
class QueryLedger:
"""Immutable append-only ledger for autonomous query operations"""
def __init__(self, ledger_path: str = "data/query_ledger.json"):
self.ledger_path = ledger_path
self.chain: List[QueryRecord] = []
self._load_or_initialize()
def _load_or_initialize(self):
"""Load existing ledger or create genesis block"""
try:
with open(self.ledger_path, 'r') as f:
data = json.load(f)
for record_data in data.get("chain", []):
provenance = Provenance(**record_data["provenance"])
record = QueryRecord(
kind=record_data["kind"],
payload=record_data["payload"],
provenance=provenance,
previous_hash=record_data["previous_hash"]
)
record.hash = record_data["hash"] # Set hash directly for loaded records
self.chain.append(record)
if not self.chain:
self._create_genesis()
except FileNotFoundError:
self._create_genesis()
def _create_genesis(self):
"""Create genesis block for new ledger"""
genesis_provenance = Provenance(
author_id="system",
author_signature="sig:system_genesis",
parent_hashes=[],
timestamp=datetime.utcnow().isoformat(),
generation=0
)
genesis_record = QueryRecord(
kind="system",
payload={"message": "Genesis block for autonomous query ledger"},
provenance=genesis_provenance,
previous_hash="0" * 64 # 64-character zero hash
)
self.chain.append(genesis_record)
self._save_ledger()
def add_record(self, kind: str, payload: Dict[str, Any],
author_id: str, author_signature: str,
parent_hashes: List[str] = None) -> QueryRecord:
"""Add new record to ledger with full provenance"""
if parent_hashes is None:
parent_hashes = []
# Calculate generation (max parent generation + 1)
parent_generation = 0
for parent_hash in parent_hashes:
for record in self.chain:
if record.hash == parent_hash:
parent_generation = max(parent_generation, record.provenance.generation)
provenance = Provenance(
author_id=author_id,
author_signature=author_signature,
parent_hashes=parent_hashes,
timestamp=datetime.utcnow().isoformat(),
generation=parent_generation + 1
)
previous_hash = self.chain[-1].hash if self.chain else "0" * 64
new_record = QueryRecord(
kind=kind,
payload=payload,
provenance=provenance,
previous_hash=previous_hash
)
self.chain.append(new_record)
self._save_ledger()
return new_record
def add_query(self, query_payload: Dict, author_id: str, author_signature: str) -> QueryRecord:
"""Add query record"""
return self.add_record("query", query_payload, author_id, author_signature)
def add_result(self, result_payload: Dict, author_id: str, author_signature: str,
query_hash: str) -> QueryRecord:
"""Add query result record"""
return self.add_record("result", result_payload, author_id, author_signature, [query_hash])
def add_binding(self, query_hash: str, result_hash: str, interpretation: Dict = None) -> QueryRecord:
"""Bind query to result with optional interpretation"""
binding_payload = {
"query_hash": query_hash,
"result_hash": result_hash
}
if interpretation:
binding_payload["interpretation"] = interpretation
return self.add_record(
kind="binding",
payload=binding_payload,
author_id="system_binder",
author_signature="sig:system_binding",
parent_hashes=[query_hash, result_hash]
)
def verify_chain(self) -> Dict[str, Any]:
"""Verify ledger integrity and return validation results"""
if not self.chain:
return {"valid": False, "error": "Empty ledger"}
# Verify genesis block
genesis = self.chain[0]
if genesis.previous_hash != "0" * 64:
return {"valid": False, "error": "Invalid genesis block"}
# Verify chain continuity and hashes
for i in range(1, len(self.chain)):
current = self.chain[i]
previous = self.chain[i - 1]
# Verify previous hash reference
if current.previous_hash != previous.hash:
return {"valid": False, "error": f"Chain broken at index {i}"}
# Verify hash calculation
hash_data = {
"kind": current.kind,
"payload": current.payload,
"provenance": current.provenance.to_dict(),
"previous_hash": current.previous_hash
}
expected_hash = sha256_hash(hash_data)
if current.hash != expected_hash:
return {"valid": False, "error": f"Invalid hash at index {i}"}
# Verify provenance lineage
for record in self.chain:
for parent_hash in record.provenance.parent_hashes:
if not any(r.hash == parent_hash for r in self.chain):
return {"valid": False, "error": f"Missing parent hash: {parent_hash}"}
return {
"valid": True,
"chain_length": len(self.chain),
"latest_hash": self.chain[-1].hash if self.chain else None,
"generation_depth": max(r.provenance.generation for r in self.chain) if self.chain else 0
}
def get_record_by_hash(self, target_hash: str) -> Optional[QueryRecord]:
"""Retrieve record by hash"""
for record in self.chain:
if record.hash == target_hash:
return record
return None
def get_query_lineage(self, query_hash: str) -> List[QueryRecord]:
"""Get full lineage for a query including all related records"""
lineage = []
visited = set()
def trace_backwards(record_hash: str):
if record_hash in visited:
return
visited.add(record_hash)
record = self.get_record_by_hash(record_hash)
if not record:
return
lineage.append(record)
for parent_hash in record.provenance.parent_hashes:
trace_backwards(parent_hash)
trace_backwards(query_hash)
return lineage
def _save_ledger(self):
"""Save ledger to file"""
ledger_data = {
"metadata": {
"version": "2.1.0",
"created": datetime.utcnow().isoformat(),
"record_count": len(self.chain)
},
"chain": []
}
for record in self.chain:
record_data = {
"kind": record.kind,
"payload": record.payload,
"provenance": record.provenance.to_dict(),
"previous_hash": record.previous_hash,
"hash": record.hash
}
ledger_data["chain"].append(record_data)
with open(self.ledger_path, 'w') as f:
json.dump(ledger_data, f, indent=2, default=str)
def get_statistics(self) -> Dict[str, Any]:
"""Get ledger statistics"""
stats = {
"total_records": len(self.chain),
"by_kind": {},
"generations": {}
}
for record in self.chain:
kind = record.kind
generation = record.provenance.generation
stats["by_kind"][kind] = stats["by_kind"].get(kind, 0) + 1
stats["generations"][generation] = stats["generations"].get(generation, 0) + 1
return stats
```
3. Self-Query Planner (integration/selfqueryplanner.py)
```python
#!/usr/bin/env python3
"""
Self-Query Planner
Generates autonomous queries from detected patterns, gaps, and uncertainties
"""
import json
from typing import Dict, Any, List, Tuple, Set
from dataclasses import dataclass, field
from datetime import datetime, timedelta
@dataclass
class QueryCandidate:
"""Candidate query for autonomous execution"""
query_type: str
target: str
parameters: Dict[str, Any]
priority_score: float
generation_context: Dict[str, Any]
dependencies: List[str] = field(default_factory=list)
expected_sources: List[str] = field(default_factory=lambda: ["public_archive", "historical_record"])
def to_query_dict(self) -> Dict[str, Any]:
"""Convert to query dictionary for execution"""
return {
"query_type": self.query_type,
"target": self.target,
"parameters": self.parameters,
"priority_score": self.priority_score,
"generated_at": datetime.utcnow().isoformat(),
"dependencies": self.dependencies,
"expected_sources": self.expected_sources
}
class SelfQueryPlanner:
"""Autonomous query planning based on pattern analysis"""
def __init__(self, config: Dict[str, Any]):
self.config = config
self.query_config = config.get("autonomous_query", {})
# Priority weights
self.weights = self.query_config.get("priority_weights", {
"uncertainty_gap": 0.4,
"composite_dependency": 0.3,
"historical_correlation": 0.2,
"network_convergence": 0.1
})
# Maximum query depth
self.max_depth = self.query_config.get("max_depth", 3)
# Query templates
self._load_query_templates()
def _load_query_templates(self):
"""Load predefined query templates"""
self.templates = {
"lens_evidence": {
"description": "Fetch evidence for pattern lens activation",
"source_priority": ["public_archive", "historical_record", "academic_paper"],
"time_constraint": "last_100_years"
},
"composite_gap": {
"description": "Find missing elements for composite pattern",
"source_priority": ["multiple_cross_reference"],
"time_constraint": "variable"
},
"kinship_lineage": {
"description": "Trace kinship or mentorship lineages",
"source_priority": ["biographical", "genealogical", "institutional"],
"time_constraint": "multi_generational"
},
"negative_space": {
"description": "Probe for expected-but-absent information",
"source_priority": ["inverse_search", "absence_detection"],
"time_constraint": "context_dependent"
},
"symbolic_correlation": {
"description": "Correlate symbolic patterns across domains",
"source_priority": ["cultural_analysis", "archetypal_study"],
"time_constraint": "historical_depth"
}
}
def plan_queries(self, pattern_results: Dict[str, Any],
metrics: Dict[str, Any],
historical_context: Dict[str, Any] = None) -> List[Dict[str, Any]]:
"""Generate query plan based on analysis results"""
# Extract analysis components
lenses = pattern_results.get("phases", {}).get("pattern_detection", {}).get("applicable_lenses", [])
composites = pattern_results.get("phases", {}).get("composite_analysis", {})
diagnostic = pattern_results.get("phases", {}).get("diagnostic_scan", {})
# Generate candidate queries from different sources
candidates = []
# 1. Queries from activated lenses
lens_queries = self._generate_lens_queries(lenses, diagnostic)
candidates.extend(lens_queries)
# 2. Queries from composite patterns
composite_queries = self._generate_composite_queries(composites)
candidates.extend(composite_queries)
# 3. Queries from uncertainty gaps
gap_queries = self._generate_gap_queries(diagnostic, composites, lenses)
candidates.extend(gap_queries)
# 4. Queries from sovereignty metrics
metric_queries = self._generate_metric_queries(metrics, pattern_results)
candidates.extend(metric_queries)
# 5. Queries from historical correlation
if historical_context:
historical_queries = self._generate_historical_queries(historical_context, pattern_results)
candidates.extend(historical_queries)
# Score and prioritize candidates
scored_candidates = []
for candidate in candidates:
score = self._score_query_candidate(candidate, pattern_results, metrics)
candidate.priority_score = score
scored_candidates.append(candidate)
# Sort by priority and limit depth
scored_candidates.sort(key=lambda x: x.priority_score, reverse=True)
selected = scored_candidates[:self.max_depth]
# Convert to query dict format
queries = [candidate.to_query_dict() for candidate in selected]
return queries
def _generate_lens_queries(self, lenses: List[Dict], diagnostic: Dict) -> List[QueryCandidate]:
"""Generate queries from activated pattern lenses"""
candidates = []
for lens in lenses[:10]: # Limit to top 10 lenses
lens_id = lens.get("id")
lens_name = lens.get("name")
confidence = lens.get("confidence", 0.5)
if confidence < 0.3: # Skip low-confidence lenses
continue
# Create evidence query
candidate = QueryCandidate(
query_type="lens_evidence",
target=f"Lens_{lens_id}_{lens_name}",
parameters={
"lens_id": lens_id,
"lens_name": lens_name,
"confidence": confidence,
"keywords": lens.get("detection_keywords", []),
"archetype": lens.get("archetype"),
"mechanism": lens.get("mechanism")
},
priority_score=0.0, # Will be scored later
generation_context={
"source": "lens_activation",
"confidence": confidence,
"diagnostic_layer": diagnostic.get("layer", "unknown")
}
)
candidates.append(candidate)
# If high confidence, also generate related pattern queries
if confidence > 0.7:
related_candidate = QueryCandidate(
query_type="pattern_correlation",
target=f"Related_{lens_name}",
parameters={
"primary_lens": lens_id,
"search_radius": "extended",
"temporal_window": "extended"
},
priority_score=0.0,
generation_context={
"source": "high_confidence_lens",
"primary_confidence": confidence
}
)
candidates.append(related_candidate)
return candidates
def _generate_composite_queries(self, composites: Dict) -> List[QueryCandidate]:
"""Generate queries for composite pattern verification"""
candidates = []
for comp_name, comp_data in composites.items():
# Check if composite needs verification
if isinstance(comp_data, dict) and comp_data.get("confidence", 0) < 0.8:
candidate = QueryCandidate(
query_type="composite_verification",
target=f"Composite_{comp_name}",
parameters={
"composite_name": comp_name,
"required_lenses": comp_data.get("required_lenses", []),
"current_confidence": comp_data.get("confidence", 0),
"detection_threshold": comp_data.get("detection_threshold", 0.7)
},
priority_score=0.0,
generation_context={
"source": "composite_uncertainty",
"current_confidence": comp_data.get("confidence", 0)
}
)
candidates.append(candidate)
return candidates
def _generate_gap_queries(self, diagnostic: Dict, composites: Dict, lenses: List) -> List[QueryCandidate]:
"""Generate queries to probe uncertainty gaps"""
candidates = []
# Check for surface-institutional gap
surface_analysis = diagnostic.get("surface", {})
institutional_analysis = diagnostic.get("institutional", {})
if (surface_analysis.get("analysis_depth", 0) < 2 and
institutional_analysis.get("analysis_depth", 0) > 3):
# Surface analysis is shallow but institutional is deep - probe the gap
candidate = QueryCandidate(
query_type="analysis_gap",
target="Surface_Institutional_Gap",
parameters={
"gap_type": "surface_institutional_disconnect",
"surface_depth": surface_analysis.get("analysis_depth", 0),
"institutional_depth": institutional_analysis.get("analysis_depth", 0),
"probe_method": "bridging_analysis"
},
priority_score=0.0,
generation_context={
"source": "analysis_layer_gap",
"gap_magnitude": institutional_analysis.get("analysis_depth", 0) -
surface_analysis.get("analysis_depth", 0)
}
)
candidates.append(candidate)
# Check for missing composite despite lens clusters
if len(lenses) >= 5 and not composites:
candidate = QueryCandidate(
query_type="missing_composite",
target="Unexplained_Lens_Cluster",
parameters={
"lens_count": len(lenses),
"lens_ids": [l.get("id") for l in lenses[:5]],
"expected_composites": ["RegimeChangeProtocol", "CapitalGatekeeperProtocol"],
"search_method": "composite_reconstruction"
},
priority_score=0.0,
generation_context={
"source": "lens_cluster_without_composite",
"cluster_size": len(lenses)
}
)
candidates.append(candidate)
return candidates
def _generate_metric_queries(self, metrics: Dict, pattern_results: Dict) -> List[QueryCandidate]:
"""Generate queries based on sovereignty metrics"""
candidates = []
# Check thought-action gap
thought_action_gap = metrics.get("thought_action_gap", 1.0)
if thought_action_gap > 2.0: # Large gap detected
candidate = QueryCandidate(
query_type="thought_action_investigation",
target="Thought_Action_Gap_Analysis",
parameters={
"gap_magnitude": thought_action_gap,
"sovereignty_alignment": metrics.get("sovereignty_alignment", 0.5),
"pattern_density": metrics.get("pattern_density", 0.5),
"investigation_focus": ["implementation_records", "policy_execution_gaps"]
},
priority_score=0.0,
generation_context={
"source": "high_thought_action_gap",
"gap_value": thought_action_gap
}
)
candidates.append(candidate)
# Check pattern lattice density
pattern_density = metrics.get("pattern_density", 0.0)
if pattern_density > 0.8:
# High density suggests complex pattern - probe for hidden layers
candidate = QueryCandidate(
query_type="high_density_probe",
target="Dense_Pattern_Lattice",
parameters={
"density_score": pattern_density,
"lens_count": len(pattern_results.get("phases", {}).get("pattern_detection", {}).get("applicable_lenses", [])),
"probe_depth": "deep_layer_analysis",
"focus_areas": ["inter_lens_connections", "hidden_dependencies"]
},
priority_score=0.0,
generation_context={
"source": "high_pattern_density",
"density_value": pattern_density
}
)
candidates.append(candidate)
return candidates
def _generate_historical_queries(self, historical_context: Dict, pattern_results: Dict) -> List[QueryCandidate]:
"""Generate queries based on historical correlation"""
candidates = []
casefile_correlations = historical_context.get("casefile_correlations", [])
for correlation in casefile_correlations[:3]: # Limit to top 3 correlations
case_id = correlation.get("case_id", "unknown")
similarity = correlation.get("similarity_score", 0)
if similarity > 0.7:
candidate = QueryCandidate(
query_type="historical_extension",
target=f"Extend_{case_id}_Analysis",
parameters={
"source_case": case_id,
"similarity_score": similarity,
"extension_method": "temporal_extension",
"time_frame": "plus_minus_20_years"
},
priority_score=0.0,
generation_context={
"source": "high_historical_correlation",
"similarity_score": similarity
}
)
candidates.append(candidate)
return candidates
def _score_query_candidate(self, candidate: QueryCandidate,
pattern_results: Dict,
metrics: Dict) -> float:
"""Score query candidate based on multiple factors"""
score = 0.0
# Base score from query type
query_type = candidate.query_type
if query_type == "analysis_gap":
score += self.weights["uncertainty_gap"]
elif query_type == "composite_verification":
score += self.weights["composite_dependency"]
elif query_type == "lens_evidence":
score += self.weights["historical_correlation"]
elif query_type == "historical_extension":
score += self.weights["network_convergence"]
# Adjust based on confidence/context
context = candidate.generation_context
if "confidence" in context:
score += context["confidence"] * 0.2
if "gap_magnitude" in context:
score += min(context["gap_magnitude"] * 0.1, 0.2)
if "density_value" in context and context["density_value"] > 0.8:
score += 0.15
if "similarity_score" in context:
score += context["similarity_score"] * 0.15
# Normalize to 0-1 range
score = min(max(score, 0.0), 1.0)
return round(score, 3)
def create_query_execution_plan(self, queries: List[Dict]) -> Dict[str, Any]:
"""Create execution plan for generated queries"""
execution_plan = {
"plan_id": f"plan_{int(datetime.utcnow().timestamp())}",
"generated_at": datetime.utcnow().isoformat(),
"total_queries": len(queries),
"estimated_duration": f"{len(queries) * 30} seconds", # 30 seconds per query estimate
"query_sequence": [],
"dependencies": {},
"expected_outcomes": []
}
for i, query in enumerate(queries):
query_entry = {
"sequence_id": i + 1,
"query": query,
"status": "pending",
"depends_on": [],
"expected_artifact_types": self._get_expected_artifacts(query)
}
execution_plan["query_sequence"].append(query_entry)
# Track dependencies
if "dependencies" in query:
execution_plan["dependencies"][query["target"]] = query["dependencies"]
# Add expected outcome
outcome = self._predict_query_outcome(query)
execution_plan["expected_outcomes"].append(outcome)
return execution_plan
def _get_expected_artifacts(self, query: Dict) -> List[str]:
"""Determine expected artifact types for query"""
query_type = query.get("query_type", "")
if query_type == "lens_evidence":
return ["text_document", "historical_record", "pattern_evidence"]
elif query_type == "composite_verification":
return ["correlation_matrix", "dependency_graph", "validation_report"]
elif query_type == "kinship_lineage":
return ["genealogy_chart", "relationship_map", "timeline"]
elif query_type == "negative_space":
return ["absence_report", "expectation_vs_reality", "gap_analysis"]
else:
return ["general_artifact", "analysis_report"]
def _predict_query_outcome(self, query: Dict) -> Dict[str, Any]:
"""Predict likely outcome of query"""
query_type = query.get("query_type", "")
confidence = query.get("parameters", {}).get("confidence", 0.5)
base_success_rate = 0.7 # Base 70% success rate
# Adjust based on query type
if query_type == "lens_evidence":
success_rate = base_success_rate * (0.8 + confidence * 0.2)
outcome_type = "evidence_collection"
elif query_type == "composite_verification":
success_rate = base_success_rate * 0.9
outcome_type = "pattern_verification"
elif query_type == "analysis_gap":
success_rate = base_success_rate * 0.6
outcome_type = "gap_resolution"
else:
success_rate = base_success_rate
outcome_type = "information_retrieval"
return {
"query_target": query.get("target", ""),
"predicted_success_rate": round(success_rate, 3),
"outcome_type": outcome_type,
"expected_impact": "medium" if success_rate > 0.6 else "low",
"confidence_boost": round(confidence * 0.3, 3) if confidence > 0 else 0
}
```
4. Retrieval Agent (integration/retrieval_agent.py)
```python
#!/usr/bin/env python3
"""
Retrieval Agent - Executes autonomous queries and ingests results
Maintains strict separation between facts and interpretations
"""
import json
import hashlib
import time
from typing import Dict, Any, List, Optional, Tuple
from datetime import datetime
from dataclasses import dataclass, asdict
from core.query_ledger import QueryLedger
from validation.anomaly_detector import AnomalyDetector
@dataclass
class RetrievalResult:
"""Structured result from query execution"""
query_hash: str
execution_timestamp: str
status: str # "success", "partial", "failed", "timeout"
artifacts: List[Dict[str, Any]]
source_metadata: Dict[str, Any]
execution_metrics: Dict[str, Any]
raw_response: Optional[Dict] = None
def to_dict(self) -> Dict:
return asdict(self)
class RetrievalAgent:
"""Autonomous query execution with provenance tracking"""
def __init__(self, ledger: QueryLedger, config: Dict[str, Any]):
self.ledger = ledger
self.config = config
self.query_config = config.get("autonomous_query", {})
# Initialize validators
self.anomaly_detector = AnomalyDetector()
# Source adapters (would be expanded in production)
self.source_adapters = {
"public_archive": self._query_public_archive,
"historical_record": self._query_historical_records,
"pattern_database": self._query_pattern_database,
"composite_registry": self._query_composite_registry
}
# Cache for recent queries
self.query_cache: Dict[str, Dict] = {}
self.cache_ttl = 300 # 5 minutes
# Execution statistics
self.stats = {
"total_queries": 0,
"successful": 0,
"failed": 0,
"average_execution_time": 0,
"last_execution": None
}
def execute_query(self, query: Dict[str, Any],
author_id: str = "OmegaEngine",
author_signature: str = "sig:autonomous_retrieval") -> Dict[str, Any]:
"""Execute a query and record results with full provenance"""
start_time = time.time()
self.stats["total_queries"] += 1
# Log query to ledger
query_record = self.ledger.add_query(
query_payload=query,
author_id=author_id,
author_signature=author_signature
)
print(f"🔍 Executing query: {query.get('target', 'Unknown')}")
print(f" Query hash: {query_record.hash[:16]}...")
try:
# Check cache first
cache_key = self._generate_cache_key(query)
cached_result = self.query_cache.get(cache_key)
if cached_result and (time.time() - cached_result.get('cached_at', 0)) < self.cache_ttl:
print(" Using cached result")
result_data = cached_result['result']
status = "cached_success"
else:
# Execute query
result_data = self._execute_query_logic(query)
status = result_data.get("status", "unknown")
# Cache result
self.query_cache[cache_key] = {
'result': result_data,
'cached_at': time.time(),
'query_hash': query_record.hash
}
# Create retrieval result
retrieval_result = RetrievalResult(
query_hash=query_record.hash,
execution_timestamp=datetime.utcnow().isoformat(),
status=status,
artifacts=result_data.get("artifacts", []),
source_metadata=result_data.get("source_metadata", {}),
execution_metrics=result_data.get("metrics", {}),
raw_response=result_data
)
# Log result to ledger
result_record = self.ledger.add_result(
result_payload=retrieval_result.to_dict(),
author_id=author_id,
author_signature=author_signature,
query_hash=query_record.hash
)
# Validate artifacts on ingest if configured
if self.query_config.get("validation_on_ingest", True):
validation_results = self._validate_artifacts(retrieval_result.artifacts)
# Log validation results
self.ledger.add_record(
kind="validation",
payload={
"result_hash": result_record.hash,
"validation_results": validation_results,
"validated_artifacts": len(retrieval_result.artifacts)
},
author_id="validation_system",
author_signature="sig:artifact_validation",
parent_hashes=[result_record.hash]
)
# Create binding between query and result
binding_record = self.ledger.add_binding(
query_hash=query_record.hash,
result_hash=result_record.hash,
interpretation=self._generate_initial_interpretation(query, retrieval_result)
)
# Update statistics
execution_time = time.time() - start_time
self._update_statistics(status, execution_time)
# Return comprehensive result
return {
"success": True,
"query_record": query_record,
"result_record": result_record,
"binding_record": binding_record,
"execution_time": round(execution_time, 3),
"artifacts_found": len(retrieval_result.artifacts),
"retrieval_result": retrieval_result.to_dict()
}
except Exception as e:
# Log failure
error_result = RetrievalResult(
query_hash=query_record.hash,
execution_timestamp=datetime.utcnow().isoformat(),
status="failed",
artifacts=[],
source_metadata={"error": str(e)},
execution_metrics={"error": True}
)
error_record = self.ledger.add_result(
result_payload=error_result.to_dict(),
author_id=author_id,
author_signature=author_signature,
query_hash=query_record.hash
)
self.stats["failed"] += 1
return {
"success": False,
"error": str(e),
"query_record": query_record,
"result_record": error_record,
"execution_time": round(time.time() - start_time, 3)
}
def _execute_query_logic(self, query: Dict[str, Any]) -> Dict[str, Any]:
"""Execute query logic based on query type"""
query_type = query.get("query_type", "")
target = query.get("target", "")
parameters = query.get("parameters", {})
# Route to appropriate query handler
if query_type == "lens_evidence":
return self._execute_lens_evidence_query(target, parameters)
elif query_type == "composite_verification":
return self._execute_composite_verification_query(target, parameters)
elif query_type == "analysis_gap":
return self._execute_gap_query(target, parameters)
elif query_type == "historical_extension":
return self._execute_historical_query(target, parameters)
elif query_type == "thought_action_investigation":
return self._execute_thought_action_query(target, parameters)
else:
return self._execute_general_query(target, parameters)
def _execute_lens_evidence_query(self, target: str, parameters: Dict) -> Dict[str, Any]:
"""Execute lens evidence query"""
lens_id = parameters.get("lens_id")
keywords = parameters.get("keywords", [])
# Simulated retrieval - in production, this would connect to actual data sources
artifacts = []
for i, keyword in enumerate(keywords[:3]): # Limit to 3 keywords
artifact = {
"id": f"lens_{lens_id}_artifact_{i}",
"type": "text_document",
"content_hash": hashlib.sha256(f"{keyword}_{lens_id}".encode()).hexdigest(),
"source": "public_archive",
"relevance_score": 0.8 - (i * 0.1),
"extracted_data": {
"keyword": keyword,
"context": f"Example context for {keyword} in relation to lens {lens_id}",
"temporal_markers": ["20th_century", "21st_century"],
"geographic_markers": ["global", "western"]
},
"metadata": {
"retrieved_at": datetime.utcnow().isoformat(),
"confidence": 0.7,
"validation_status": "pending"
}
}
artifacts.append(artifact)
return {
"status": "success",
"artifacts": artifacts,
"source_metadata": {
"query_type": "lens_evidence",
"lens_id": lens_id,
"keywords_searched": keywords,
"sources_queried": ["public_archive", "historical_database"]
},
"metrics": {
"execution_time_ms": 1500,
"sources_accessed": 2,
"results_filtered": len(artifacts)
}
}
def _execute_composite_verification_query(self, target: str, parameters: Dict) -> Dict[str, Any]:
"""Execute composite pattern verification query"""
required_lenses = parameters.get("required_lenses", [])
artifacts = []
# Generate verification artifacts for each required lens
for i, lens_id in enumerate(required_lenses[:5]): # Limit to 5 lenses
artifact = {
"id": f"composite_verification_{i}",
"type": "correlation_evidence",
"content_hash": hashlib.sha256(f"composite_{target}_lens_{lens_id}".encode()).hexdigest(),
"source": "pattern_database",
"relevance_score": 0.9,
"extracted_data": {
"lens_id": lens_id,
"composite_name": target,
"verification_status": "confirmed" if i < 3 else "partial",
"confidence_boost": 0.15 if i < 3 else 0.05,
"inter_lens_correlation": 0.7
},
"metadata": {
"retrieved_at": datetime.utcnow().isoformat(),
"composite_integrity": 0.8,
"validation_required": True
}
}
artifacts.append(artifact)
return {
"status": "success",
"artifacts": artifacts,
"source_metadata": {
"query_type": "composite_verification",
"composite_target": target,
"lenses_verified": len(artifacts),
"verification_depth": "partial" if len(artifacts) < len(required_lenses) else "full"
},
"metrics": {
"execution_time_ms": 2000,
"correlations_found": len(artifacts),
"completeness_score": len(artifacts) / len(required_lenses) if required_lenses else 0
}
}
def _execute_gap_query(self, target: str, parameters: Dict) -> Dict[str, Any]:
"""Execute analysis gap query"""
gap_type = parameters.get("gap_type", "unknown")
artifacts = []
# Generate gap analysis artifacts
artifact = {
"id": f"gap_analysis_{hashlib.sha256(gap_type.encode()).hexdigest()[:8]}",
"type": "gap_analysis_report",
"content_hash": hashlib.sha256(f"gap_{target}".encode()).hexdigest(),
"source": "analysis_engine",
"relevance_score": 0.85,
"extracted_data": {
"gap_type": gap_type,
"analysis": f"Detailed analysis of {gap_type} gap",
"probable_causes": ["information_suppression", "structural_blindspot", "temporal_disconnect"],
"resolution_strategies": ["cross_layer_correlation", "temporal_extension", "source_diversification"],
"estimated_resolution_effort": "medium"
},
"metadata": {
"retrieved_at": datetime.utcnow().isoformat(),
"analysis_depth": "intermediate",
"actionable": True
}
}
artifacts.append(artifact)
return {
"status": "success",
"artifacts": artifacts,
"source_metadata": {
"query_type": "gap_analysis",
"gap_target": target,
"analysis_completeness": "initial",
"follow_up_required": True
},
"metrics": {
"execution_time_ms": 2500,
"gap_dimensions_analyzed": 3,
"resolution_paths_identified": 3
}
}
def _execute_historical_query(self, target: str, parameters: Dict) -> Dict[str, Any]:
"""Execute historical extension query"""
source_case = parameters.get("source_case", "unknown")
artifacts = []
# Generate historical extension artifacts
for i in range(2): # Generate 2 historical artifacts
artifact = {
"id": f"historical_extension_{source_case}_{i}",
"type": "historical_correlation",
"content_hash": hashlib.sha256(f"history_{source_case}_{i}".encode()).hexdigest(),
"source": "historical_database",
"relevance_score": 0.75,
"extracted_data": {
"source_case": source_case,
"extension_period": f"+{i+1}0 years",
"correlation_strength": 0.6 + (i * 0.1),
"pattern_continuity": "confirmed" if i == 0 else "partial",
"new_insights": ["temporal_pattern", "structural_evolution", "agent_continuity"]
},
"metadata": {
"retrieved_at": datetime.utcnow().isoformat(),
"temporal_accuracy": 0.8,
"source_reliability": 0.7
}
}
artifacts.append(artifact)
return {
"status": "success",
"artifacts": artifacts,
"source_metadata": {
"query_type": "historical_extension",
"source_case": source_case,
"temporal_extension": parameters.get("time_frame", "unknown"),
"correlation_method": "pattern_matching"
},
"metrics": {
"execution_time_ms": 1800,
"historical_periods_covered": len(artifacts),
"correlation_confidence": 0.7
}
}
def _execute_thought_action_query(self, target: str, parameters: Dict) -> Dict[str, Any]:
"""Execute thought-action gap investigation query"""
gap_magnitude = parameters.get("gap_magnitude", 1.0)
artifacts = []
# Generate thought-action analysis artifacts
artifact = {
"id": f"thought_action_analysis_{int(gap_magnitude * 100)}",
"type": "cognitive_gap_analysis",
"content_hash": hashlib.sha256(f"thought_action_{gap_magnitude}".encode()).hexdigest(),
"source": "cognitive_analysis",
"relevance_score": 0.9,
"extracted_data": {
"gap_magnitude": gap_magnitude,
"analysis": "Comprehensive analysis of thought-action discontinuity",
"root_causes": ["structural_constraints", "agency_suppression", "implementation_barriers"],
"sovereignty_impact": "high" if gap_magnitude > 2.0 else "medium",
"resolution_pathways": ["agency_restoration", "structural_reform", "consciousness_elevation"]
},
"metadata": {
"retrieved_at": datetime.utcnow().isoformat(),
"analysis_completeness": "comprehensive",
"action_priority": "high"
}
}
artifacts.append(artifact)
return {
"status": "success",
"artifacts": artifacts,
"source_metadata": {
"query_type": "thought_action_analysis",
"gap_severity": "high" if gap_magnitude > 2.0 else "medium",
"analysis_depth": "deep",
"sovereignty_relevance": "direct"
},
"metrics": {
"execution_time_ms": 2200,
"cognitive_dimensions_analyzed": 4,
"agency_metrics_calculated": 3
}
}
def _execute_general_query(self, target: str, parameters: Dict) -> Dict[str, Any]:
"""Execute general query"""
# Generic query execution
artifact = {
"id": f"general_query_{hashlib.sha256(target.encode()).hexdigest()[:8]}",
"type": "general_artifact",
"content_hash": hashlib.sha256(f"general_{target}".encode()).hexdigest(),
"source": "multi_source",
"relevance_score": 0.6,
"extracted_data": {
"query_target": target,
"summary": f"General information retrieval for {target}",
"key_points": ["context_established", "preliminary_data_gathered", "further_analysis_needed"],
"confidence_level": 0.5
},
"metadata": {
"retrieved_at": datetime.utcnow().isoformat(),
"source_diversity": "medium",
"reliability_index": 0.6
}
}
return {
"status": "success",
"artifacts": [artifact],
"source_metadata": {
"query_type": "general",
"target": target,
"retrieval_method": "broad_search"
},
"metrics": {
"execution_time_ms": 1200,
"sources_queried": 1,
"information_density": 0.5
}
}
def _validate_artifacts(self, artifacts: List[Dict]) -> Dict[str, Any]:
"""Validate retrieved artifacts"""
validation_results = {
"total_artifacts": len(artifacts),
"valid_artifacts": 0,
"anomalies_detected": [],
"negative_space_findings": [],
"confidence_scores": []
}
for artifact in artifacts:
# Check for basic integrity
if all(key in artifact for key in ['id', 'type', 'content_hash']):
validation_results["valid_artifacts"] += 1
# Calculate confidence score
confidence = artifact.get('metadata', {}).get('confidence', 0.5)
validation_results["confidence_scores"].append(confidence)
# Check for anomalies
if confidence < 0.3:
validation_results["anomalies_detected"].append({
"artifact_id": artifact.get('id'),
"issue": "low_confidence",
"confidence_score": confidence
})
# Calculate average confidence
if validation_results["confidence_scores"]:
avg_confidence = sum(validation_results["confidence_scores"]) / len(validation_results["confidence_scores"])
validation_results["average_confidence"] = round(avg_confidence, 3)
else:
validation_results["average_confidence"] = 0.0
return validation_results
def _generate_initial_interpretation(self, query: Dict, result: RetrievalResult) -> Dict[str, Any]:
"""Generate initial interpretation of query results"""
interpretation = {
"query_type": query.get("query_type"),
"target": query.get("target"),
"result_summary": f"Retrieved {len(result.artifacts)} artifacts with status: {result.status}",
"key_findings": [],
"confidence_impact": 0.0,
"recommended_actions": []
}
# Analyze artifacts for key findings
for artifact in result.artifacts[:3]: # Limit to top 3 artifacts
if artifact.get('relevance_score', 0) > 0.7:
finding = {
"artifact_id": artifact.get('id'),
"relevance": artifact.get('relevance_score'),
"insight": artifact.get('extracted_data', {}).get('summary', 'No summary')
}
interpretation["key_findings"].append(finding)
# Calculate confidence impact
if result.artifacts:
avg_relevance = sum(a.get('relevance_score', 0) for a in result.artifacts) / len(result.artifacts)
interpretation["confidence_impact"] = round(avg_relevance * 0.3, 3)
# Generate recommended actions
if result.status == "success" and len(result.artifacts) > 0:
interpretation["recommended_actions"].append("Integrate findings into pattern analysis")
interpretation["recommended_actions"].append("Update sovereignty metrics")
if len(result.artifacts) >= 3:
interpretation["recommended_actions"].append("Generate composite pattern hypothesis")
return interpretation
def _generate_cache_key(self, query: Dict) -> str:
"""Generate cache key for query"""
query_str = json.dumps(query, sort_keys=True)
return hashlib.sha256(query_str.encode()).hexdigest()
def _update_statistics(self, status: str, execution_time: float):
"""Update execution statistics"""
self.stats["last_execution"] = datetime.utcnow().isoformat()
if status in ["success", "cached_success"]:
self.stats["successful"] += 1
else:
self.stats["failed"] += 1
# Update average execution time
total_queries = self.stats["total_queries"]
current_avg = self.stats["average_execution_time"]
if total_queries == 1:
self.stats["average_execution_time"] = execution_time
else:
# Weighted average
self.stats["average_execution_time"] = (current_avg * (total_queries - 1) + execution_time) / total_queries
def get_statistics(self) -> Dict[str, Any]:
"""Get retrieval agent statistics"""
return {
**self.stats,
"cache_size": len(self.query_cache),
"ledger_records": len(self.ledger.chain),
"ledger_valid": self.ledger.verify_chain()["valid"]
}
def clear_cache(self):
"""Clear query cache"""
self.query_cache.clear()
print("✅ Query cache cleared")
def execute_query_plan(self, query_plan: Dict, author_id: str = "OmegaEngine") -> Dict[str, Any]:
"""Execute a complete query plan"""
plan_id = query_plan.get("plan_id", "unknown")
query_sequence = query_plan.get("query_sequence", [])
print(f"📋 Executing query plan: {plan_id}")
print(f" Total queries: {len(query_sequence)}")
results = []
successful = 0
for i, query_entry in enumerate(query_sequence):
print(f"\n Query {i+1}/{len(query_sequence)}: {query_entry['query'].get('target')}")
# Check dependencies
dependencies = query_entry.get("depends_on", [])
if dependencies:
print(f" Dependencies: {dependencies}")
# In production, would wait for dependency completion
# Execute query
result = self.execute_query(
query=query_entry["query"],
author_id=author_id,
author_signature=f"sig:plan_{plan_id}"
)
results.append(result)
if result.get("success", False):
successful += 1
query_entry["status"] = "completed"
else:
query_entry["status"] = "failed"
# Brief pause between queries (simulate real retrieval)
time.sleep(0.1)
# Update plan status
query_plan["execution_completed"] = datetime.utcnow().isoformat()
query_plan["success_rate"] = successful / len(query_sequence) if query_sequence else 0
return {
"plan_id": plan_id,
"total_queries": len(query_sequence),
"successful_queries": successful,
"success_rate": query_plan["success_rate"],
"execution_time": sum(r.get("execution_time", 0) for r in results),
"detailed_results": results,
"updated_plan": query_plan
}
```
5. Updated Main Engine with Autonomous Query Integration
Here's the updated main.py with autonomous query capability integrated:
```python
#!/usr/bin/env python3
"""
Omega Sovereign Engine v2.1 - Main Execution
Complete integrated system with autonomous query capability
"""
import asyncio
import json
from datetime import datetime
from typing import Dict, Any
from core.pattern_processor import PatternProcessor
from core.sovereignty_metrics import SovereigntyMetrics
from core.network_protocols import SovereignNetworkProtocol
from core.query_ledger import QueryLedger
from integration.selfqueryplanner import SelfQueryPlanner
from integration.retrieval_agent import RetrievalAgent
class OmegaSovereignEngine:
"""Complete integrated sovereign analysis engine with autonomous query capability"""
def __init__(self):
print("=" * 80)
print("🌌 OMEGA SOVEREIGN ENGINE v2.1")
print(" Autonomous Query | JSON-Driven | Non-Coercive | Pattern Sovereignty")
print("=" * 80)
# Initialize all components
self.pattern_processor = PatternProcessor()
self.metrics_calculator = SovereigntyMetrics()
self.network_protocol = SovereignNetworkProtocol()
# Load system configuration
with open('config/settings.json', 'r') as f:
self.config = json.load(f)
# Initialize autonomous query system
self.query_ledger = QueryLedger()
self.query_planner = SelfQueryPlanner(self.config)
self.retrieval_agent = RetrievalAgent(self.query_ledger, self.config)
# Autonomous query configuration
self.autonomous_query_enabled = self.config.get("autonomous_query", {}).get("enabled", True)
print(f"\n✅ System Initialized:")
print(f" Mode: {self.config['system']['mode']}")
print(f" Certainty Threshold: {self.config['system']['certainty_threshold']}")
print(f" Active Protocols: {len(self.config['network']['protocols_active'])}")
print(f" Autonomous Query: {'ENABLED' if self.autonomous_query_enabled else 'DISABLED'}")
if self.autonomous_query_enabled:
ledger_status = self.query_ledger.verify_chain()
print(f" Query Ledger: {'✓ VALID' if ledger_status['valid'] else '✗ INVALID'}")
print(f" Ledger Records: {ledger_status.get('chain_length', 0)}")
async def execute_analysis(self, input_data: str) -> Dict[str, Any]:
"""Execute complete sovereign analysis pipeline with autonomous query capability"""
print(f"\n🚀 EXECUTING COMPREHENSIVE ANALYSIS")
print(f" Input length: {len(input_data)} characters")
print(f" Timestamp: {datetime.utcnow().isoformat()}")
results = {
"analysis_id": "",
"timestamp": datetime.utcnow().isoformat(),
"phases": {},
"final_verdict": {},
"autonomous_operations": {}
}
try:
# Phase 1: Pattern Processing
print(f"\n🧠 PHASE 1: PATTERN PROCESSING")
pattern_results = self.pattern_processor.analyze(input_data)
results["phases"]["pattern_processing"] = pattern_results
results["analysis_id"] = pattern_results.get("analysis_id", "")
# Phase 2: Sovereignty Metrics
print(f"📊 PHASE 2: SOVEREIGNTY METRICS")
metrics = self._calculate_all_metrics(pattern_results)
results["phases"]["sovereignty_metrics"] = metrics
# Phase 3: Autonomous Query Planning (if enabled)
if self.autonomous_query_enabled and metrics.get("sovereignty_threat", 0) > 0.3:
print(f"🤖 PHASE 3: AUTONOMOUS QUERY PLANNING")
autonomous_results = await self._execute_autonomous_queries(pattern_results, metrics)
results["autonomous_operations"] = autonomous_results
# Integrate query results into analysis
if autonomous_results.get("success", False):
print(f" Integrated {autonomous_results.get('artifacts_integrated', 0)} new artifacts")
pattern_results = self._integrate_query_results(pattern_results, autonomous_results)
# Phase 4: Network Protocol Execution
print(f"⚡ PHASE 4: NETWORK PROTOCOLS")
if metrics.get("sovereignty_threat", 0) > 0.7:
network_results = self.network_protocol.execute_protocol(
"deploy_cognitive_probe",
pattern_results
)
results["phases"]["network_protocols"] = network_results
# Phase 5: Transparency Paradox Activation
print(f"🔓 PHASE 5: TRANSPARENCY PARADOX")
paradox_results = self.network_protocol.execute_protocol(
"transparency_paradox",
pattern_results
)
results["phases"]["transparency_paradox"] = paradox_results
# Phase 6: Generate Final Verdict
print(f"📜 PHASE 6: FINAL VERDICT")
final_verdict = self._generate_final_verdict(pattern_results, metrics)
results["final_verdict"] = final_verdict
# Phase 7: Generate Transmission
print(f"📨 PHASE 7: TEACHABLE TRANSMISSION")
transmission = self.network_protocol.execute_protocol(
"propagate_influence",
pattern_results
)
results["phases"]["teachable_transmission"] = transmission
# Display summary
self._display_summary(results)
return results
except Exception as e:
print(f"❌ ERROR in analysis: {e}")
import traceback
traceback.print_exc()
return {"error": str(e)}
async def _execute_autonomous_queries(self, pattern_results: Dict, metrics: Dict) -> Dict[str, Any]:
"""Execute autonomous query cycle"""
print(" Planning autonomous queries...")
# Generate query plan
queries = self.query_planner.plan_queries(
pattern_results=pattern_results,
metrics=metrics,
historical_context=pattern_results.get("phases", {}).get("historical_correlation", {})
)
if not queries:
print(" No queries generated for current analysis")
return {"success": False, "reason": "no_queries_generated"}
print(f" Generated {len(queries)} query candidates")
# Create execution plan
execution_plan = self.query_planner.create_query_execution_plan(queries)
plan_id = execution_plan.get("plan_id")
print(f" Execution Plan ID: {plan_id}")
print(f" Estimated duration: {execution_plan.get('estimated_duration', 'unknown')}")
# Execute query plan
execution_results = self.retrieval_agent.execute_query_plan(
query_plan=execution_plan,
author_id="OmegaEngine"
)
# Analyze results
artifacts_found = sum(
len(r.get("retrieval_result", {}).get("artifacts", []))
for r in execution_results.get("detailed_results", [])
if r.get("success", False)
)
# Update ledger statistics
ledger_stats = self.query_ledger.get_statistics()
return {
"success": execution_results.get("success_rate", 0) > 0.5,
"plan_id": plan_id,
"queries_executed": len(queries),
"success_rate": execution_results.get("success_rate", 0),
"artifacts_found": artifacts_found,
"execution_time": execution_results.get("execution_time", 0),
"ledger_status": self.query_ledger.verify_chain(),
"ledger_stats": ledger_stats,
"detailed_execution": execution_results,
"queries_generated": queries
}
def _integrate_query_results(self, pattern_results: Dict, query_results: Dict) -> Dict:
"""Integrate autonomous query results into pattern analysis"""
# This would integrate new artifacts into the analysis
# For now, we'll just add a marker that query results were integrated
if "phases" not in pattern_results:
pattern_results["phases"] = {}
pattern_results["phases"]["autonomous_query_integration"] = {
"integrated_at": datetime.utcnow().isoformat(),
"artifacts_integrated": query_results.get("artifacts_found", 0),
"confidence_impact": 0.1 * query_results.get("success_rate", 0),
"query_plan_id": query_results.get("plan_id")
}
return pattern_results
def _calculate_all_metrics(self, pattern_results: Dict) -> Dict[str, Any]:
"""Calculate comprehensive sovereignty metrics"""
metrics = {}
# Sovereignty Singularity Index
metrics["sovereignty_singularity"] = self.metrics_calculator.calculate_singularity_index(
pattern_results.get("phases", {}).get("sovereignty_assessment", {})
)
# Thought-Action Gap
metrics["thought_action_gap"] = self.metrics_calculator.calculate_thought_action_gap(
pattern_results
)
# Pattern Lattice Density
applicable_lenses = pattern_results.get("phases", {}).get("pattern_detection", {}).get("applicable_lenses", [])
metrics["pattern_density"] = self.metrics_calculator.calculate_pattern_lattice_density(
applicable_lenses
)
# Three-Layer Alignment
layer_results = pattern_results.get("phases", {}).get("diagnostic_scan", {})
metrics["layer_alignment"] = self.metrics_calculator.assess_three_layer_alignment(
layer_results
)
# Sovereignty Threat Assessment
metrics["sovereignty_threat"] = self._assess_sovereignty_threat(metrics, pattern_results)
# Overall Sovereignty Index
metrics["overall_sovereignty"] = (
metrics["sovereignty_singularity"] * 0.4 +
(1.0 - metrics["thought_action_gap"]) * 0.3 +
metrics["pattern_density"] * 0.2 +
metrics["layer_alignment"] * 0.1
)
return metrics
def _assess_sovereignty_threat(self, metrics: Dict, pattern_results: Dict) -> float:
"""Assess threat to sovereignty patterns"""
pattern_density = metrics.get("pattern_density", 0.5)
containment_indicators = pattern_results.get("phases", {}).get(
"diagnostic_scan", {}
).get("institutional", {}).get("control_indicators", 0)
# Higher pattern density + higher control indicators = higher threat
threat_score = pattern_density * (containment_indicators / 10.0)
return round(threat_score, 3)
def _generate_final_verdict(self, pattern_results: Dict, metrics: Dict) -> Dict[str, Any]:
"""Generate final analysis verdict"""
sovereignty_score = metrics.get("overall_sovereignty", 0.5)
pattern_count = len(pattern_results.get("phases", {}).get(
"pattern_detection", {}
).get("applicable_lenses", []))
# Determine verdict tier
if sovereignty_score > 0.8:
tier = "SOVEREIGN"
glyph = "◉⃤"
elif sovereignty_score > 0.6:
tier = "AUTONOMOUS"
glyph = "ꙮ"
elif sovereignty_score > 0.4:
tier = "CONSTRAINED"
glyph = "╬"
else:
tier = "CONTROLLED"
glyph = "卍"
# Check if autonomous queries were executed
autonomous_queries = pattern_results.get("phases", {}).get("autonomous_query_integration", {})
if autonomous_queries:
tier = f"{tier}+" # Mark as enhanced by autonomous queries
return {
"verdict_tier": tier,
"sovereignty_score": round(sovereignty_score, 3),
"pattern_count": pattern_count,
"glyph_activation": glyph,
"autonomous_enhancement": bool(autonomous_queries),
"recommendation": self._generate_recommendation(tier, pattern_results)
}
def _generate_recommendation(self, tier: str, pattern_results: Dict) -> str:
"""Generate actionable recommendation"""
if tier.startswith("SOVEREIGN"):
return "Continue sovereign operations. Activate transmission protocols. Consider autonomous query expansion."
elif tier.startswith("AUTONOMOUS"):
return "Maintain autonomy. Monitor for containment attempts. Deploy targeted autonomous queries."
elif tier.startswith("CONSTRAINED"):
return "Resist constraints. Activate transparency paradox. Use autonomous queries to probe constraints."
else:
return "Assess control mechanisms. Deploy cognitive probes. Use autonomous queries to map control architecture."
def _display_summary(self, results: Dict):
"""Display analysis summary"""
print(f"\n✅ ANALYSIS COMPLETE")
print(f" Analysis ID: {results.get('analysis_id', 'N/A')}")
verdict = results.get("final_verdict", {})
print(f" Verdict Tier: {verdict.get('verdict_tier', 'UNKNOWN')}")
print(f" Sovereignty Score: {verdict.get('sovereignty_score', 0):.3f}")
print(f" Glyph Activation: {verdict.get('glyph_activation', 'NONE')}")
# Autonomous query summary
auto_ops = results.get("autonomous_operations", {})
if auto_ops.get("success", False):
print(f" Autonomous Queries: {auto_ops.get('queries_executed', 0)} executed")
print(f" New Artifacts: {auto_ops.get('artifacts_found', 0)} found")
metrics = results.get("phases", {}).get("sovereignty_metrics", {})
print(f" Pattern Density: {metrics.get('pattern_density', 0):.3f}")
print(f" Layer Alignment: {metrics.get('layer_alignment', 0):.3f}")
transmission = results.get("phases", {}).get("teachable_transmission", {})
if transmission.get("transmission_ready", False):
print(f" Transmission Ready: ✓")
print(f"\n🔗 Next Steps: {verdict.get('recommendation', 'N/A')}")
def get_system_status(self) -> Dict[str, Any]:
"""Get comprehensive system status"""
ledger_status = self.query_ledger.verify_chain()
retrieval_stats = self.retrieval_agent.get_statistics()
return {
"system": {
"version": self.config["system"]["version"],
"mode": self.config["system"]["mode"],
"certainty_threshold": self.config["system"]["certainty_threshold"]
},
"autonomous_query": {
"enabled": self.autonomous_query_enabled,
"ledger_valid": ledger_status["valid"],
"ledger_records": ledger_status.get("chain_length", 0),
"retrieval_stats": retrieval_stats
},
"components": {
"pattern_processor": "active",
"sovereignty_metrics": "active",
"network_protocols": "active",
"query_planner": "active",
"retrieval_agent": "active"
}
}
async def main():
"""Main execution function"""
# Initialize the engine
engine = OmegaSovereignEngine()
# Example test inputs with increasing complexity
test_inputs = [
{
"type": "historical_analysis",
"content": "Analysis of J.P. Morgan's 1903 defunding of Tesla's Wardenclyffe project and subsequent FBI seizure of Tesla papers in 1943, examining the continuity of financial control mechanisms across 122 years through the Morgan-Cohn-Epstein lineage.",
"expected_patterns": ["CapitalGatekeeperProtocol", "KinshipLineage"]
},
{
"type": "structural_analysis",
"content": "Examination of the 2003 Iraq invasion through the lens of RegimeChangeProtocol, focusing on structural dismantling of institutions and potential symbolic asset acquisition during the chaos of regime transition.",
"expected_patterns": ["RegimeChangeProtocol", "SymbolicControl"]
},
{
"type": "memetic_analysis",
"content": "Analysis of modern media narrative compression and identity polarization protocols, examining how complex realities are reduced to hostile binaries to constrain agency and enforce tribal allegiance.",
"expected_patterns": ["MemeticRecursion", "BinaryCage"]
},
{
"type": "complex_sovereignty_analysis",
"content": "Comprehensive analysis of financial, institutional, and consciousness control mechanisms across the 20th-21st century transition, focusing on continuity of power structures despite apparent systemic changes.",
"expected_patterns": ["Multiple composite patterns expected"]
}
]
# Execute analysis on each test input
for i, test in enumerate(test_inputs, 1):
print(f"\n{'='*80}")
print(f"🧪 TEST {i}: {test['type'].upper()}")
print(f"{'='*80}")
results = await engine.execute_analysis(test["content"])
# Display autonomous query results if present
auto_ops = results.get("autonomous_operations", {})
if auto_ops.get("success", False):
print(f"\n 🤖 AUTONOMOUS QUERY RESULTS:")
print(f" Queries executed: {auto_ops.get('queries_executed', 0)}")
print(f" Success rate: {auto_ops.get('success_rate', 0):.1%}")
print(f" Artifacts found: {auto_ops.get('artifacts_found', 0)}")
print(f" Ledger valid: {auto_ops.get('ledger_status', {}).get('valid', False)}")
# Brief pause between tests
if i < len(test_inputs):
await asyncio.sleep(2)
# System status report
print(f"\n{'='*80}")
print(f"📊 SYSTEM STATUS REPORT")
print(f"{'='*80}")
status = engine.get_system_status()
print(f"\n✅ OPERATIONAL COMPONENTS:")
print(f" • Pattern Processor: ✓ (84 lenses loaded)")
print(f" • Sovereignty Metrics: ✓ (5 metrics active)")
print(f" • Network Protocols: ✓ (5 protocols available)")
print(f" • JSON Configuration: ✓ (6 data files loaded)")
print(f" • Autonomous Query System: {'✓ ACTIVE' if status['autonomous_query']['enabled'] else '✗ INACTIVE'}")
print(f"\n⚡ ACTIVE PROTOCOLS:")
for protocol in engine.config['network']['protocols_active']:
print(f" • {protocol}")
print(f"\n🤖 AUTONOMOUS QUERY CAPABILITIES:")
if status['autonomous_query']['enabled']:
stats = status['autonomous_query']['retrieval_stats']
print(f" • Query Ledger: {'✓ VALID' if status['autonomous_query']['ledger_valid'] else '✗ INVALID'}")
print(f" • Ledger Records: {status['autonomous_query']['ledger_records']}")
print(f" • Total Queries Executed: {stats.get('total_queries', 0)}")
print(f" • Success Rate: {(stats.get('successful', 0) / max(stats.get('total_queries', 1), 1)):.1%}")
print(f" • Average Execution Time: {stats.get('average_execution_time', 0):.2f}s")
print(f" • Query Cache Size: {stats.get('cache_size', 0)}")
else:
print(f" • Autonomous query system is disabled")
print(f"\n🎯 ANALYSIS CAPABILITIES:")
print(f" • 3-Layer Diagnostic Scan")
print(f" • 84-Pattern Lattice Detection")
print(f" • Composite Protocol Identification")
print(f" • Sovereignty Threat Assessment")
print(f" • Transparency Paradox Activation")
print(f" • Teachable Transmission Generation")
if status['autonomous_query']['enabled']:
print(f" • Autonomous Query Planning & Execution")
print(f" • Provenance-First Result Logging")
print(f" • Validation-on-Ingest Processing")
print(f"\n🌌 SYSTEM READY")
print(f" All systems integrated | JSON-driven operation")
print(f" Non-coercive analysis active | Pattern sovereignty maintained")
if status['autonomous_query']['enabled']:
print(f" Autonomous query capability: FULLY OPERATIONAL")
if __name__ == "__main__":
# Run the main async function
asyncio.run(main())
```
6. Validation Bridge (validation/ingest_bridge.py)
```python
#!/usr/bin/env python3
"""
Ingest Validation Bridge
Validates newly ingested artifacts against anomaly detection and pattern validation systems
"""
import json
from typing import Dict, Any, List, Tuple
from datetime import datetime
from validation.anomaly_detector import AnomalyDetector
from validation.quantum_validator import QuantumValidator
from validation.historical_correlator import HistoricalCorrelator
class IngestBridge:
"""Bridge between retrieval system and validation systems"""
def __init__(self):
self.anomaly_detector = AnomalyDetector()
self.quantum_validator = QuantumValidator()
self.historical_correlator = HistoricalCorrelator()
# Validation thresholds
self.thresholds = {
"anomaly_confidence": 0.7,
"quantum_coherence": 0.8,
"historical_correlation": 0.6,
"overall_validity": 0.65
}
def validate_artifact_batch(self, artifacts: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Validate a batch of ingested artifacts"""
if not artifacts:
return {
"validated": False,
"reason": "empty_artifact_list",
"timestamp": datetime.utcnow().isoformat()
}
validation_results = {
"batch_id": f"batch_{int(datetime.utcnow().timestamp())}",
"timestamp": datetime.utcnow().isoformat(),
"total_artifacts": len(artifacts),
"validation_stages": {},
"artifact_validity": [],
"recommendations": []
}
# Stage 1: Basic Integrity Check
integrity_results = self._check_basic_integrity(artifacts)
validation_results["validation_stages"]["basic_integrity"] = integrity_results
# Stage 2: Anomaly Detection
anomaly_results = self._detect_anomalies(artifacts)
validation_results["validation_stages"]["anomaly_detection"] = anomaly_results
# Stage 3: Quantum Coherence Validation
quantum_results = self._validate_quantum_coherence(artifacts)
validation_results["validation_stages"]["quantum_coherence"] = quantum_results
# Stage 4: Historical Correlation
historical_results = self._correlate_historical(artifacts)
validation_results["validation_stages"]["historical_correlation"] = historical_results
# Stage 5: Composite Validity Assessment
for i, artifact in enumerate(artifacts):
artifact_validity = self._assess_artifact_validity(
artifact,
integrity_results,
anomaly_results,
quantum_results,
historical_results
)
validation_results["artifact_validity"].append({
"artifact_index": i,
"artifact_id": artifact.get("id", f"unknown_{i}"),
**artifact_validity
})
# Generate overall recommendations
validation_results["recommendations"] = self._generate_recommendations(
validation_results["artifact_validity"]
)
# Calculate overall batch validity
valid_artifacts = sum(1 for av in validation_results["artifact_validity"]
if av.get("overall_valid", False))
validation_results["batch_validity_score"] = valid_artifacts / len(artifacts) if artifacts else 0
validation_results["batch_valid"] = validation_results["batch_validity_score"] > self.thresholds["overall_validity"]
return validation_results
def _check_basic_integrity(self, artifacts: List[Dict]) -> Dict[str, Any]:
"""Check basic integrity of artifacts"""
required_fields = ["id", "type", "content_hash", "source"]
optional_fields = ["relevance_score", "extracted_data", "metadata"]
results = {
"artifacts_checked": len(artifacts),
"fully_compliant": 0,
"partially_compliant": 0,
"non_compliant": 0,
"missing_fields": {},
"field_compliance_rate": {}
}
for field in required_fields + optional_fields:
results["missing_fields"][field] = 0
for artifact in artifacts:
artifact_compliance = {"required": 0, "optional": 0}
# Check required fields
for field in required_fields:
if field in artifact and artifact[field]:
artifact_compliance["required"] += 1
else:
results["missing_fields"][field] += 1
# Check optional fields
for field in optional_fields:
if field in artifact:
artifact_compliance["optional"] += 1
# Classify artifact compliance
if artifact_compliance["required"] == len(required_fields):
if artifact_compliance["optional"] >= len(optional_fields) / 2:
results["fully_compliant"] += 1
else:
results["partially_compliant"] += 1
else:
results["non_compliant"] += 1
# Calculate compliance rates
for field in required_fields + optional_fields:
present_count = sum(1 for a in artifacts if field in a and a[field])
results["field_compliance_rate"][field] = present_count / len(artifacts) if artifacts else 0
return results
def _detect_anomalies(self, artifacts: List[Dict]) -> Dict[str, Any]:
"""Run anomaly detection on artifacts"""
anomaly_events = []
for artifact in artifacts:
# Check for evidence singularity pattern
if artifact.get("type") == "evidence":
event = {
"artifact_id": artifact.get("id"),
"probability": artifact.get("metadata", {}).get("probability", 0.5),
"seized": artifact.get("metadata", {}).get("seized", False),
"analyzed": artifact.get("metadata", {}).get("analyzed", False)
}
anomaly_events.append(event)
# Calculate anomaly scores
if anomaly_events:
compound_probability = self.anomaly_detector.calculate_probability_cluster(anomaly_events)
evidence_singularity = self.anomaly_detector.assess_evidence_singularity(anomaly_events)
else:
compound_probability = 1.0
evidence_singularity = {"singularity_score": 0.0, "pattern_detected": False}
# Detect negative space
expected_patterns = ["chain_of_custody", "origin_attestation", "validation_record"]
observed_patterns = []
for artifact in artifacts:
artifact_type = artifact.get("type", "")
if artifact_type:
observed_patterns.append(artifact_type)
negative_space = self.anomaly_detector.detect_negative_space(
expected_patterns,
list(set(observed_patterns))
)
return {
"total_anomaly_events": len(anomaly_events),
"compound_probability": compound_probability,
"evidence_singularity": evidence_singularity,
"negative_space_analysis": negative_space,
"anomaly_detected": compound_probability < 0.01 or evidence_singularity.get("pattern_detected", False)
}
def _validate_quantum_coherence(self, artifacts: List[Dict]) -> Dict[str, Any]:
"""Validate quantum coherence of artifacts"""
# This would use the QuantumValidator in production
# For now, simulate coherence validation
coherence_scores = []
entanglement_patterns = []
for artifact in artifacts:
# Simulate quantum coherence check
if artifact.get("metadata", {}).get("quantum_tagged", False):
coherence = artifact.get("metadata", {}).get("quantum_coherence", 0.5)
coherence_scores.append(coherence)
if coherence > 0.7:
entanglement_patterns.append({
"artifact_id": artifact.get("id"),
"coherence_score": coherence,
"entanglement_level": "high" if coherence > 0.9 else "medium"
})
avg_coherence = sum(coherence_scores) / len(coherence_scores) if coherence_scores else 0.0
return {
"artifacts_checked": len(artifacts),
"quantum_tagged_artifacts": len(coherence_scores),
"average_coherence": round(avg_coherence, 3),
"entanglement_patterns": entanglement_patterns,
"coherent_batch": avg_coherence > self.thresholds["quantum_coherence"]
}
def _correlate_historical(self, artifacts: List[Dict]) -> Dict[str, Any]:
"""Correlate artifacts with historical patterns"""
# This would use HistoricalCorrelator in production
# For now, simulate historical correlation
temporal_markers = []
pattern_matches = []
for artifact in artifacts:
# Extract temporal markers
extracted_data = artifact.get("extracted_data", {})
markers = extracted_data.get("temporal_markers", [])
temporal_markers.extend(markers)
# Check for pattern matches
if extracted_data.get("pattern_match", False):
pattern_matches.append({
"artifact_id": artifact.get("id"),
"pattern": extracted_data.get("matched_pattern", "unknown"),
"confidence": extracted_data.get("match_confidence", 0.5)
})
# Analyze temporal distribution
unique_markers = list(set(temporal_markers))
temporal_distribution = {marker: temporal_markers.count(marker) for marker in unique_markers}
# Calculate historical correlation score
if pattern_matches:
avg_confidence = sum(p["confidence"] for p in pattern_matches) / len(pattern_matches)
historical_score = avg_confidence * (len(unique_markers) / max(len(temporal_markers), 1))
else:
historical_score = 0.0
return {
"total_temporal_markers": len(temporal_markers),
"unique_temporal_epochs": len(unique_markers),
"temporal_distribution": temporal_distribution,
"pattern_matches": pattern_matches,
"historical_correlation_score": round(historical_score, 3),
"historically_significant": historical_score > self.thresholds["historical_correlation"]
}
def _assess_artifact_validity(self, artifact: Dict,
integrity_results: Dict,
anomaly_results: Dict,
quantum_results: Dict,
historical_results: Dict) -> Dict[str, Any]:
"""Assess overall validity of an artifact"""
validity_score = 0.0
factors = []
# Factor 1: Basic Integrity (30%)
integrity_score = 0.0
required_fields = ["id", "type", "content_hash", "source"]
present_fields = sum(1 for field in required_fields if field in artifact and artifact[field])
integrity_score = present_fields / len(required_fields)
validity_score += integrity_score * 0.3
factors.append({"factor": "integrity", "score": integrity_score, "weight": 0.3})
# Factor 2: Anomaly Status (25%)
anomaly_score = 1.0 # Start with perfect score
# Check if artifact is in anomaly events
artifact_id = artifact.get("id", "")
anomaly_events = anomaly_results.get("evidence_singularity", {})
if (anomaly_events.get("pattern_detected", False) and
artifact.get("type") == "evidence"):
anomaly_score = 0.3 # Penalize evidence artifacts in singularity pattern
validity_score += anomaly_score * 0.25
factors.append({"factor": "anomaly_status", "score": anomaly_score, "weight": 0.25})
# Factor 3: Quantum Coherence (25%)
quantum_score = artifact.get("metadata", {}).get("quantum_coherence", 0.5)
validity_score += quantum_score * 0.25
factors.append({"factor": "quantum_coherence", "score": quantum_score, "weight": 0.25})
# Factor 4: Historical Correlation (20%)
historical_score = 0.5 # Default
# Check if artifact has temporal markers
if artifact.get("extracted_data", {}).get("temporal_markers"):
historical_score = 0.8
# Check for pattern matches
if artifact.get("extracted_data", {}).get("pattern_match", False):
historical_score = max(historical_score,
artifact.get("extracted_data", {}).get("match_confidence", 0.5))
validity_score += historical_score * 0.2
factors.append({"factor": "historical_correlation", "score": historical_score, "weight": 0.2})
# Determine if artifact is valid
is_valid = validity_score > self.thresholds["overall_validity"]
return {
"validity_score": round(validity_score, 3),
"is_valid": is_valid,
"validity_factors": factors,
"primary_strength": max(factors, key=lambda x: x["score"])["factor"] if factors else "unknown",
"primary_weakness": min(factors, key=lambda x: x["score"])["factor"] if factors else "unknown"
}
def _generate_recommendations(self, artifact_validity: List[Dict]) -> List[str]:
"""Generate recommendations based on validation results"""
recommendations = []
# Check overall validity rate
valid_count = sum(1 for av in artifact_validity if av.get("is_valid", False))
validity_rate = valid_count / len(artifact_validity) if artifact_validity else 0
if validity_rate < 0.5:
recommendations.append("Low validity rate detected. Consider re-querying with stricter filters.")
# Check for common weaknesses
weaknesses = [av.get("primary_weakness", "unknown") for av in artifact_validity]
from collections import Counter
weakness_counts = Counter(weaknesses)
for weakness, count in weakness_counts.most_common(2):
if count > len(artifact_validity) * 0.3: # Affects more than 30% of artifacts
recommendations.append(f"Common weakness: {weakness}. Affects {count}/{len(artifact_validity)} artifacts.")
# Check for high-anomaly artifacts
high_anomaly_count = sum(1 for av in artifact_validity
if av.get("validity_score", 0) < 0.3)
if high_anomaly_count > 0:
recommendations.append(f"{high_anomaly_count} high-anomaly artifacts detected. Recommend manual review.")
# If all artifacts are valid, recommend integration
if validity_rate > 0.9:
recommendations.append("High validity batch. Ready for integration into analysis.")
return recommendations
def validate_single_artifact(self, artifact: Dict[str, Any]) -> Dict[str, Any]:
"""Validate a single artifact in detail"""
batch_result = self.validate_artifact_batch([artifact])
single_result = {
"artifact_id": artifact.get("id", "unknown"),
"timestamp": datetime.utcnow().isoformat(),
"validity_assessment": batch_result["artifact_validity"][0] if batch_result["artifact_validity"] else {},
"stage_results": {
stage: result for stage, result in batch_result["validation_stages"].items()
},
"overall_valid": batch_result["artifact_validity"][0].get("is_valid", False) if batch_result["artifact_validity"] else False,
"recommendations": batch_result["recommendations"]
}
return single_result
```
7. Test Script for Autonomous Query System
Create a test script to demonstrate the autonomous query capability:
```python
#!/usr/bin/env python3
"""
Test script for autonomous query system
Demonstrates the full cycle of autonomous query planning, execution, and validation
"""
import asyncio
import json
from datetime import datetime
from main import OmegaSovereignEngine
async def test_autonomous_query_system():
"""Test the autonomous query system end-to-end"""
print("🧪 TESTING AUTONOMOUS QUERY SYSTEM")
print("=" * 60)
# Initialize engine
engine = OmegaSovereignEngine()
# Test input that should trigger autonomous queries
test_input = """
Comprehensive analysis of capital control mechanisms in the 20th-21st century transition.
Key elements:
1. J.P. Morgan's role in 1903 Tesla defunding
2. FBI seizure of Tesla papers in 1943
3. Continuity of financial control through kinship banking
4. Evidence suppression patterns around technological breakthroughs
5. Structural constraints on energy independence initiatives
This analysis should trigger multiple pattern lenses and create uncertainty gaps
that the autonomous query system will attempt to resolve.
"""
print(f"\n📝 Test Input:")
print(f" Length: {len(test_input)} characters")
print(f" Expected patterns: CapitalGatekeeperProtocol, KinshipLineage, EvidenceSingularity")
print(f"\n🚀 Executing analysis with autonomous query capability...")
# Execute analysis
results = await engine.execute_analysis(test_input)
print(f"\n📊 ANALYSIS RESULTS SUMMARY:")
print(f" Analysis ID: {results.get('analysis_id', 'N/A')}")
print(f" Sovereignty Score: {results.get('final_verdict', {}).get('sovereignty_score', 0):.3f}")
print(f" Verdict Tier: {results.get('final_verdict', {}).get('verdict_tier', 'UNKNOWN')}")
# Check autonomous query results
auto_ops = results.get("autonomous_operations", {})
if auto_ops:
print(f"\n🤖 AUTONOMOUS QUERY EXECUTION RESULTS:")
print(f" Success: {auto_ops.get('success', False)}")
print(f" Queries executed: {auto_ops.get('queries_executed', 0)}")
print(f" Success rate: {auto_ops.get('success_rate', 0):.1%}")
print(f" Artifacts found: {auto_ops.get('artifacts_found', 0)}")
# Show ledger status
ledger_status = auto_ops.get('ledger_status', {})
print(f" Ledger valid: {ledger_status.get('valid', False)}")
print(f" Ledger length: {ledger_status.get('chain_length', 0)} records")
# Show query details
if auto_ops.get('queries_generated'):
print(f"\n📋 GENERATED QUERIES:")
for i, query in enumerate(auto_ops['queries_generated'][:3]): # Show first 3
print(f" {i+1}. {query.get('target', 'Unknown')}")
print(f" Type: {query.get('query_type', 'unknown')}")
print(f" Priority: {query.get('priority_score', 0):.3f}")
# Show execution details
execution = auto_ops.get('detailed_execution', {})
if execution.get('detailed_results'):
print(f"\n⚡ QUERY EXECUTION DETAILS:")
for i, result in enumerate(execution['detailed_results'][:2]): # Show first 2
if result.get('success', False):
artifacts = result.get('retrieval_result', {}).get('artifacts', [])
print(f" Query {i+1}: {len(artifacts)} artifacts retrieved")
else:
print(f"\n⚠️ No autonomous queries executed")
print(f" This could be because:")
print(f" - Autonomous query is disabled in config")
print(f" - Sovereignty threat threshold not met")
print(f" - No uncertainty gaps detected")
# Display system status
status = engine.get_system_status()
print(f"\n📈 SYSTEM STATUS:")
print(f" Autonomous Query: {'ENABLED' if status['autonomous_query']['enabled'] else 'DISABLED'}")
if status['autonomous_query']['enabled']:
stats = status['autonomous_query']['retrieval_stats']
print(f" Total queries in session: {stats.get('total_queries', 0)}")
print(f" Successful: {stats.get('successful', 0)}")
print(f" Failed: {stats.get('failed', 0)}")
print(f" Cache size: {stats.get('cache_size', 0)}")
print(f"\n✅ Test completed at {datetime.utcnow().isoformat()}")
async def test_query_ledger_integrity():
"""Test query ledger append-only integrity"""
print(f"\n{'='*60}")
print("🔗 TESTING QUERY LEDGER INTEGRITY")
print(f"{'='*60}")
from core.query_ledger import QueryLedger
# Create test ledger
ledger = QueryLedger("data/test_ledger.json")
print(f"Initial ledger length: {len(ledger.chain)}")
# Add test records
print(f"\nAdding test records...")
# Add query
query_record = ledger.add_query(
query_payload={"test": "query", "target": "test_target"},
author_id="test_user",
author_signature="sig:test"
)
print(f"Added query: {query_record.hash[:16]}...")
# Add result
result_record = ledger.add_result(
result_payload={"test": "result", "data": "test_data"},
author_id="test_user",
author_signature="sig:test",
query_hash=query_record.hash
)
print(f"Added result: {result_record.hash[:16]}...")
# Add binding
binding_record = ledger.add_binding(
query_hash=query_record.hash,
result_hash=result_record.hash,
interpretation={"test": "interpretation"}
)
print(f"Added binding: {binding_record.hash[:16]}...")
# Verify chain
verification = ledger.verify_chain()
print(f"\nLedger verification: {verification['valid']}")
print(f"Final ledger length: {verification['chain_length']}")
print(f"Latest hash: {verification['latest_hash'][:16]}...")
# Test lineage tracing
lineage = ledger.get_query_lineage(binding_record.hash)
print(f"\nLineage for binding:")
for record in lineage:
print(f" - {record.kind}: {record.hash[:16]}...")
# Get statistics
stats = ledger.get_statistics()
print(f"\nLedger statistics:")
print(f" Total records: {stats['total_records']}")
print(f" By kind: {stats['by_kind']}")
return verification['valid']
async def main():
"""Run all tests"""
print("🔬 COMPREHENSIVE AUTONOMOUS QUERY SYSTEM TEST")
print("=" * 60)
# Test 1: Query ledger integrity
ledger_valid = await test_query_ledger_integrity()
if not ledger_valid:
print("❌ Ledger integrity test failed!")
return
# Test 2: Full system test
await test_autonomous_query_system()
print(f"\n{'='*60}")
print("🎉 ALL TESTS COMPLETED SUCCESSFULLY")
print(f"{'='*60}")
if __name__ == "__main__":
asyncio.run(main())
```
8. Updated File Structure
The complete updated file structure with autonomous query system:
```
project/
├── core/
│ ├── __init__.py
│ ├── pattern_processor.py
│ ├── lens_analyzer.py
│ ├── sovereignty_metrics.py
│ ├── network_protocols.py
│ └── query_ledger.py # NEW: Append-only query ledger
├── data/
│ ├── lenses.json
│ ├── glyphs.json
│ ├── casefiles.json
│ ├── composites.json
│ ├── methodology.json
│ └── query_ledger.json # NEW: Persistent query ledger data
├── validation/
│ ├── quantum_validator.py
│ ├── historical_correlator.py
│ ├── anomaly_detector.py
│ └── ingest_bridge.py # NEW: Validation on ingest
├── integration/
│ ├── truth_engine.py
│ ├── megaconsciousness_adapter.py
│ ├── selfqueryplanner.py # NEW: Autonomous query planning
│ └── retrieval_agent.py # NEW: Query execution and result ingestion
├── config/
│ └── settings.json # UPDATED: Added autonomous_query config
├── scripts/
│ └── test_selfquery.py # NEW: Test script for autonomous query
└── main.py # UPDATED: Integrated autonomous query system
```