Spaces:
Runtime error
Runtime error
| # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= | |
| import os | |
| from typing import Any, Dict, List, Optional, Type, Union | |
| from openai import AsyncOpenAI, AsyncStream, OpenAI, Stream | |
| from pydantic import BaseModel | |
| from camel.messages import OpenAIMessage | |
| from camel.models.base_model import BaseModelBackend | |
| from camel.types import ( | |
| ChatCompletion, | |
| ChatCompletionChunk, | |
| ModelType, | |
| ) | |
| from camel.utils import ( | |
| BaseTokenCounter, | |
| OpenAITokenCounter, | |
| ) | |
| class OpenAICompatibleModelV2(BaseModelBackend): | |
| r"""Constructor for model backend supporting OpenAI compatibility. | |
| Args: | |
| model_type (Union[ModelType, str]): Model for which a backend is | |
| created. | |
| model_config_dict (Optional[Dict[str, Any]], optional): A dictionary | |
| that will be fed into:obj:`openai.ChatCompletion.create()`. If | |
| :obj:`None`, :obj:`{}` will be used. (default: :obj:`None`) | |
| api_key (str): The API key for authenticating with the model service. | |
| url (str): The url to the model service. | |
| token_counter (Optional[BaseTokenCounter], optional): Token counter to | |
| use for the model. If not provided, :obj:`OpenAITokenCounter( | |
| ModelType.GPT_4O_MINI)` will be used. | |
| (default: :obj:`None`) | |
| timeout (Optional[float], optional): The timeout value in seconds for | |
| API calls. If not provided, will fall back to the MODEL_TIMEOUT | |
| environment variable or default to 180 seconds. | |
| (default: :obj:`None`) | |
| """ | |
| def __init__( | |
| self, | |
| model_type: Union[ModelType, str], | |
| model_config_dict: Optional[Dict[str, Any]] = None, | |
| api_key: Optional[str] = None, | |
| url: Optional[str] = None, | |
| token_counter: Optional[BaseTokenCounter] = None, | |
| timeout: Optional[float] = None, | |
| ) -> None: | |
| api_key = api_key or os.environ.get("OPENAI_COMPATIBILITY_API_KEY") | |
| url = url or os.environ.get("OPENAI_COMPATIBILITY_API_BASE_URL") | |
| timeout = timeout or float(os.environ.get("MODEL_TIMEOUT", 180)) | |
| super().__init__( | |
| model_type, model_config_dict, api_key, url, token_counter | |
| ) | |
| self._timeout = timeout | |
| self._client = OpenAI( | |
| timeout=self._timeout, | |
| max_retries=3, | |
| api_key=self._api_key, | |
| base_url=self._url, | |
| ) | |
| self._async_client = AsyncOpenAI( | |
| timeout=self._timeout, | |
| max_retries=3, | |
| api_key=self._api_key, | |
| base_url=self._url, | |
| ) | |
| def _run( | |
| self, | |
| messages: List[OpenAIMessage], | |
| response_format: Optional[Type[BaseModel]] = None, | |
| tools: Optional[List[Dict[str, Any]]] = None, | |
| ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]: | |
| r"""Runs inference of OpenAI chat completion. | |
| Args: | |
| messages (List[OpenAIMessage]): Message list with the chat history | |
| in OpenAI API format. | |
| response_format (Optional[Type[BaseModel]]): The format of the | |
| response. | |
| tools (Optional[List[Dict[str, Any]]]): The schema of the tools to | |
| use for the request. | |
| Returns: | |
| Union[ChatCompletion, Stream[ChatCompletionChunk]]: | |
| `ChatCompletion` in the non-stream mode, or | |
| `Stream[ChatCompletionChunk]` in the stream mode. | |
| """ | |
| response_format = response_format or self.model_config_dict.get( | |
| "response_format", None | |
| ) | |
| if response_format: | |
| return self._request_parse(messages, response_format, tools) | |
| else: | |
| return self._request_chat_completion(messages, tools) | |
| async def _arun( | |
| self, | |
| messages: List[OpenAIMessage], | |
| response_format: Optional[Type[BaseModel]] = None, | |
| tools: Optional[List[Dict[str, Any]]] = None, | |
| ) -> Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]: | |
| r"""Runs inference of OpenAI chat completion in async mode. | |
| Args: | |
| messages (List[OpenAIMessage]): Message list with the chat history | |
| in OpenAI API format. | |
| response_format (Optional[Type[BaseModel]]): The format of the | |
| response. | |
| tools (Optional[List[Dict[str, Any]]]): The schema of the tools to | |
| use for the request. | |
| Returns: | |
| Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]: | |
| `ChatCompletion` in the non-stream mode, or | |
| `AsyncStream[ChatCompletionChunk]` in the stream mode. | |
| """ | |
| response_format = response_format or self.model_config_dict.get( | |
| "response_format", None | |
| ) | |
| if response_format: | |
| return await self._arequest_parse(messages, response_format, tools) | |
| else: | |
| return await self._arequest_chat_completion(messages, tools) | |
| def _request_chat_completion( | |
| self, | |
| messages: List[OpenAIMessage], | |
| tools: Optional[List[Dict[str, Any]]] = None, | |
| ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]: | |
| request_config = self.model_config_dict.copy() | |
| if tools: | |
| request_config["tools"] = tools | |
| return self._client.chat.completions.create( | |
| messages=messages, | |
| model=self.model_type, | |
| **request_config, | |
| ) | |
| async def _arequest_chat_completion( | |
| self, | |
| messages: List[OpenAIMessage], | |
| tools: Optional[List[Dict[str, Any]]] = None, | |
| ) -> Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]: | |
| request_config = self.model_config_dict.copy() | |
| if tools: | |
| request_config["tools"] = tools | |
| return await self._async_client.chat.completions.create( | |
| messages=messages, | |
| model=self.model_type, | |
| **request_config, | |
| ) | |
| def _request_parse( | |
| self, | |
| messages: List[OpenAIMessage], | |
| response_format: Type[BaseModel], | |
| tools: Optional[List[Dict[str, Any]]] = None, | |
| ) -> ChatCompletion: | |
| import copy | |
| request_config = copy.deepcopy(self.model_config_dict) | |
| # Remove stream from request_config since OpenAI does not support it | |
| # when structured response is used | |
| request_config["response_format"] = response_format | |
| request_config.pop("stream", None) | |
| if tools is not None: | |
| request_config["tools"] = tools | |
| return self._client.beta.chat.completions.parse( | |
| messages=messages, | |
| model=self.model_type, | |
| **request_config, | |
| ) | |
| async def _arequest_parse( | |
| self, | |
| messages: List[OpenAIMessage], | |
| response_format: Type[BaseModel], | |
| tools: Optional[List[Dict[str, Any]]] = None, | |
| ) -> ChatCompletion: | |
| import copy | |
| request_config = copy.deepcopy(self.model_config_dict) | |
| # Remove stream from request_config since OpenAI does not support it | |
| # when structured response is used | |
| request_config["response_format"] = response_format | |
| request_config.pop("stream", None) | |
| if tools is not None: | |
| request_config["tools"] = tools | |
| return await self._async_client.beta.chat.completions.parse( | |
| messages=messages, | |
| model=self.model_type, | |
| **request_config, | |
| ) | |
| def token_counter(self) -> BaseTokenCounter: | |
| r"""Initialize the token counter for the model backend. | |
| Returns: | |
| OpenAITokenCounter: The token counter following the model's | |
| tokenization style. | |
| """ | |
| if not self._token_counter: | |
| self._token_counter = OpenAITokenCounter(ModelType.GPT_4O_MINI) | |
| return self._token_counter | |
| def stream(self) -> bool: | |
| r"""Returns whether the model is in stream mode, which sends partial | |
| results each time. | |
| Returns: | |
| bool: Whether the model is in stream mode. | |
| """ | |
| return self.model_config_dict.get('stream', False) | |
| def check_model_config(self): | |
| pass | |