Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,78 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
|
|
|
| 3 |
|
| 4 |
-
#
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
answer = result['answer']
|
| 10 |
score = result['score']
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Define the Gradio interface
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
gr.
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
if __name__ == "__main__":
|
| 29 |
interface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
+
from transformers.pipelines import PipelineException
|
| 4 |
|
| 5 |
+
# Preload models
|
| 6 |
+
models = {
|
| 7 |
+
"distilbert-base-uncased-distilled-squad": "distilbert-base-uncased-distilled-squad",
|
| 8 |
+
"roberta-base-squad2": "deepset/roberta-base-squad2",
|
| 9 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad": "bert-large-uncased-whole-word-masking-finetuned-squad",
|
| 10 |
+
"albert-base-v2": "twmkn9/albert-base-v2-squad2",
|
| 11 |
+
"xlm-roberta-large-squad2": "deepset/xlm-roberta-large-squad2"
|
| 12 |
+
}
|
| 13 |
|
| 14 |
+
loaded_models = {}
|
| 15 |
+
|
| 16 |
+
def load_model(model_name):
|
| 17 |
+
if model_name not in loaded_models:
|
| 18 |
+
try:
|
| 19 |
+
loaded_models[model_name] = pipeline("question-answering", model=models[model_name])
|
| 20 |
+
except PipelineException as e:
|
| 21 |
+
return str(e)
|
| 22 |
+
return loaded_models[model_name]
|
| 23 |
+
|
| 24 |
+
def answer_question(model_name, file, question):
|
| 25 |
+
model = load_model(model_name)
|
| 26 |
+
if isinstance(model, str):
|
| 27 |
+
return model, "", ""
|
| 28 |
+
|
| 29 |
+
context = file.read() if file else ""
|
| 30 |
+
result = model(question=question, context=context)
|
| 31 |
answer = result['answer']
|
| 32 |
score = result['score']
|
| 33 |
+
|
| 34 |
+
# Explain score
|
| 35 |
+
score_explanation = f"The confidence score ranges from 0 to 1, where a higher score indicates higher confidence in the answer's correctness. In this case, the score is {score:.2f}. A score closer to 1 implies the model is very confident about the answer."
|
| 36 |
+
|
| 37 |
+
return answer, f"{score:.2f}", score_explanation
|
| 38 |
|
| 39 |
# Define the Gradio interface
|
| 40 |
+
with gr.Blocks() as interface:
|
| 41 |
+
gr.Markdown(
|
| 42 |
+
"""
|
| 43 |
+
# Question Answering System
|
| 44 |
+
Upload a document and ask questions to get answers based on the context.
|
| 45 |
+
""")
|
| 46 |
+
|
| 47 |
+
with gr.Row():
|
| 48 |
+
model_dropdown = gr.Dropdown(
|
| 49 |
+
choices=list(models.keys()),
|
| 50 |
+
label="Select Model",
|
| 51 |
+
value="distilbert-base-uncased-distilled-squad"
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
with gr.Row():
|
| 55 |
+
file_input = gr.File(label="Upload Document")
|
| 56 |
+
question_input = gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question")
|
| 57 |
+
|
| 58 |
+
with gr.Row():
|
| 59 |
+
answer_output = gr.Textbox(label="Answer")
|
| 60 |
+
score_output = gr.Textbox(label="Confidence Score")
|
| 61 |
+
explanation_output = gr.Textbox(label="Score Explanation")
|
| 62 |
+
|
| 63 |
+
with gr.Row():
|
| 64 |
+
submit_button = gr.Button("Submit")
|
| 65 |
+
|
| 66 |
+
gr.Markdown("### Progress")
|
| 67 |
+
with gr.Row():
|
| 68 |
+
progress_bar = gr.Progress(label="Loading Model...")
|
| 69 |
+
|
| 70 |
+
submit_button.click(
|
| 71 |
+
answer_question,
|
| 72 |
+
inputs=[model_dropdown, file_input, question_input],
|
| 73 |
+
outputs=[answer_output, score_output, explanation_output],
|
| 74 |
+
show_progress=progress_bar,
|
| 75 |
+
)
|
| 76 |
|
| 77 |
if __name__ == "__main__":
|
| 78 |
interface.launch()
|