Spaces:
Sleeping
Sleeping
Commit
·
5ac7b67
1
Parent(s):
f9621fd
add qwen3's
Browse files- app.py +6 -0
- demo_watermark.py +6 -4
app.py
CHANGED
|
@@ -29,6 +29,12 @@ arg_dict = {
|
|
| 29 |
"meta-llama/Llama-3.1-8B",
|
| 30 |
"meta-llama/Llama-3.2-3B",
|
| 31 |
"meta-llama/Llama-3.2-1B",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
],
|
| 33 |
# 'load_fp16' : True,
|
| 34 |
'load_fp16' : False,
|
|
|
|
| 29 |
"meta-llama/Llama-3.1-8B",
|
| 30 |
"meta-llama/Llama-3.2-3B",
|
| 31 |
"meta-llama/Llama-3.2-1B",
|
| 32 |
+
"Qwen/Qwen3-8B",
|
| 33 |
+
"Qwen/Qwen3-4B",
|
| 34 |
+
"Qwen/Qwen3-1.7B",
|
| 35 |
+
"Qwen/Qwen3-0.6B",
|
| 36 |
+
"Qwen/Qwen3-4B-Instruct-2507",
|
| 37 |
+
"Qwen/Qwen3-4B-Thinking-2507",
|
| 38 |
],
|
| 39 |
# 'load_fp16' : True,
|
| 40 |
'load_fp16' : False,
|
demo_watermark.py
CHANGED
|
@@ -201,7 +201,7 @@ def load_model(args):
|
|
| 201 |
"""Load and return the model and tokenizer"""
|
| 202 |
|
| 203 |
args.is_seq2seq_model = any([(model_type in args.model_name_or_path.lower()) for model_type in ["t5","T0"]])
|
| 204 |
-
args.is_decoder_only_model = any([(model_type in args.model_name_or_path.lower()) for model_type in ["gpt","opt","bloom","llama"]])
|
| 205 |
if args.is_seq2seq_model:
|
| 206 |
model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name_or_path)
|
| 207 |
elif args.is_decoder_only_model:
|
|
@@ -778,8 +778,10 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
| 778 |
# else:
|
| 779 |
return AutoTokenizer.from_pretrained(model_name_or_path)
|
| 780 |
|
| 781 |
-
def update_model(
|
| 782 |
-
|
|
|
|
|
|
|
| 783 |
return model
|
| 784 |
|
| 785 |
def check_model(value): return value if (value!="" and value is not None) else args.model_name_or_path
|
|
@@ -802,7 +804,7 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
|
|
| 802 |
).then(
|
| 803 |
update_tokenizer,inputs=[model_selector], outputs=[session_tokenizer]
|
| 804 |
).then(
|
| 805 |
-
update_model,inputs=[session_args], outputs=[session_model]
|
| 806 |
).then(
|
| 807 |
lambda value: str(value), inputs=[session_args], outputs=[current_parameters]
|
| 808 |
)
|
|
|
|
| 201 |
"""Load and return the model and tokenizer"""
|
| 202 |
|
| 203 |
args.is_seq2seq_model = any([(model_type in args.model_name_or_path.lower()) for model_type in ["t5","T0"]])
|
| 204 |
+
args.is_decoder_only_model = any([(model_type in args.model_name_or_path.lower()) for model_type in ["gpt","opt","bloom","llama","qwen"]])
|
| 205 |
if args.is_seq2seq_model:
|
| 206 |
model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name_or_path)
|
| 207 |
elif args.is_decoder_only_model:
|
|
|
|
| 778 |
# else:
|
| 779 |
return AutoTokenizer.from_pretrained(model_name_or_path)
|
| 780 |
|
| 781 |
+
def update_model(state, old_model):
|
| 782 |
+
del old_model
|
| 783 |
+
torch.cuda.empty_cache()
|
| 784 |
+
model, _, _ = load_model(state)
|
| 785 |
return model
|
| 786 |
|
| 787 |
def check_model(value): return value if (value!="" and value is not None) else args.model_name_or_path
|
|
|
|
| 804 |
).then(
|
| 805 |
update_tokenizer,inputs=[model_selector], outputs=[session_tokenizer]
|
| 806 |
).then(
|
| 807 |
+
update_model,inputs=[session_args, session_model], outputs=[session_model]
|
| 808 |
).then(
|
| 809 |
lambda value: str(value), inputs=[session_args], outputs=[current_parameters]
|
| 810 |
)
|