jwkirchenbauer commited on
Commit
5ac7b67
·
1 Parent(s): f9621fd

add qwen3's

Browse files
Files changed (2) hide show
  1. app.py +6 -0
  2. demo_watermark.py +6 -4
app.py CHANGED
@@ -29,6 +29,12 @@ arg_dict = {
29
  "meta-llama/Llama-3.1-8B",
30
  "meta-llama/Llama-3.2-3B",
31
  "meta-llama/Llama-3.2-1B",
 
 
 
 
 
 
32
  ],
33
  # 'load_fp16' : True,
34
  'load_fp16' : False,
 
29
  "meta-llama/Llama-3.1-8B",
30
  "meta-llama/Llama-3.2-3B",
31
  "meta-llama/Llama-3.2-1B",
32
+ "Qwen/Qwen3-8B",
33
+ "Qwen/Qwen3-4B",
34
+ "Qwen/Qwen3-1.7B",
35
+ "Qwen/Qwen3-0.6B",
36
+ "Qwen/Qwen3-4B-Instruct-2507",
37
+ "Qwen/Qwen3-4B-Thinking-2507",
38
  ],
39
  # 'load_fp16' : True,
40
  'load_fp16' : False,
demo_watermark.py CHANGED
@@ -201,7 +201,7 @@ def load_model(args):
201
  """Load and return the model and tokenizer"""
202
 
203
  args.is_seq2seq_model = any([(model_type in args.model_name_or_path.lower()) for model_type in ["t5","T0"]])
204
- args.is_decoder_only_model = any([(model_type in args.model_name_or_path.lower()) for model_type in ["gpt","opt","bloom","llama"]])
205
  if args.is_seq2seq_model:
206
  model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name_or_path)
207
  elif args.is_decoder_only_model:
@@ -778,8 +778,10 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
778
  # else:
779
  return AutoTokenizer.from_pretrained(model_name_or_path)
780
 
781
- def update_model(session_state):
782
- model, _, _ = load_model(session_state)
 
 
783
  return model
784
 
785
  def check_model(value): return value if (value!="" and value is not None) else args.model_name_or_path
@@ -802,7 +804,7 @@ def run_gradio(args, model=None, device=None, tokenizer=None):
802
  ).then(
803
  update_tokenizer,inputs=[model_selector], outputs=[session_tokenizer]
804
  ).then(
805
- update_model,inputs=[session_args], outputs=[session_model]
806
  ).then(
807
  lambda value: str(value), inputs=[session_args], outputs=[current_parameters]
808
  )
 
201
  """Load and return the model and tokenizer"""
202
 
203
  args.is_seq2seq_model = any([(model_type in args.model_name_or_path.lower()) for model_type in ["t5","T0"]])
204
+ args.is_decoder_only_model = any([(model_type in args.model_name_or_path.lower()) for model_type in ["gpt","opt","bloom","llama","qwen"]])
205
  if args.is_seq2seq_model:
206
  model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name_or_path)
207
  elif args.is_decoder_only_model:
 
778
  # else:
779
  return AutoTokenizer.from_pretrained(model_name_or_path)
780
 
781
+ def update_model(state, old_model):
782
+ del old_model
783
+ torch.cuda.empty_cache()
784
+ model, _, _ = load_model(state)
785
  return model
786
 
787
  def check_model(value): return value if (value!="" and value is not None) else args.model_name_or_path
 
804
  ).then(
805
  update_tokenizer,inputs=[model_selector], outputs=[session_tokenizer]
806
  ).then(
807
+ update_model,inputs=[session_args, session_model], outputs=[session_model]
808
  ).then(
809
  lambda value: str(value), inputs=[session_args], outputs=[current_parameters]
810
  )