Spaces:
Sleeping
Sleeping
feat: Enhance README and app functionality; add new images and update requirements
Browse files- Enhance app.py for zerogpu ssupport
- Enhance README with image lincence
- Chore requirements.txt
- Add cat, hot-dog, llama, medieval_knight images
README.md
CHANGED
|
@@ -10,4 +10,14 @@ pinned: false
|
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
| 14 |
+
|
| 15 |
+
contains free-licensed images, downloaded from [unsplash](https://unsplash.com/). Curated and created by:
|
| 16 |
+
|
| 17 |
+
[cat](https://unsplash.com/photos/black-and-white-cat-lying-on-brown-bamboo-chair-inside-room-gKXKBY-C-Dk)
|
| 18 |
+
|
| 19 |
+
[hot-dog](https://unsplash.com/photos/hotdog-sandwich-on-white-ceramic-plate-w96PYF0Uwjs)
|
| 20 |
+
|
| 21 |
+
[medieval_knight](https://huggingface.co/datasets/thliang01/medieval_knight)
|
| 22 |
+
|
| 23 |
+
[llama](https://huggingface.co/datasets/thliang01/Cute-Llama)
|
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
-
|
| 3 |
-
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
|
| 4 |
-
|
| 5 |
import requests
|
| 6 |
from torchvision import transforms
|
| 7 |
|
|
@@ -9,17 +8,32 @@ from torchvision import transforms
|
|
| 9 |
response = requests.get("https://git.io/JJkYN")
|
| 10 |
labels = response.text.split("\n")
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
with torch.no_grad():
|
| 15 |
-
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
| 16 |
-
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
| 17 |
-
return confidences
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
import torch
|
| 3 |
+
import gradio as gr
|
|
|
|
|
|
|
| 4 |
import requests
|
| 5 |
from torchvision import transforms
|
| 6 |
|
|
|
|
| 8 |
response = requests.get("https://git.io/JJkYN")
|
| 9 |
labels = response.text.split("\n")
|
| 10 |
|
| 11 |
+
# Load model initially (will be moved to GPU dynamically)
|
| 12 |
+
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet34', pretrained=True).eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
@spaces.GPU
|
| 15 |
+
def predict(inp):
|
| 16 |
+
"""
|
| 17 |
+
This function will be allocated GPU resources dynamically when called
|
| 18 |
+
"""
|
| 19 |
+
# Move model to GPU when function is called
|
| 20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
+
model.to(device)
|
| 22 |
+
|
| 23 |
+
# Process input image
|
| 24 |
+
inp = transforms.ToTensor()(inp).unsqueeze(0).to(device)
|
| 25 |
+
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
| 28 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
| 29 |
+
|
| 30 |
+
return confidences
|
| 31 |
|
| 32 |
+
# Create Gradio interface
|
| 33 |
+
gr.Interface(
|
| 34 |
+
fn=predict,
|
| 35 |
+
inputs=gr.Image(type="pil"),
|
| 36 |
+
outputs=gr.Label(num_top_classes=3),
|
| 37 |
+
examples=["lion.jpg", "cheetah.jpg", "cat.avif", "hot-dog.avif", "llama.jpg", "medieval_knight.jpg"],
|
| 38 |
+
css=".footer{display:none !important}"
|
| 39 |
+
).launch()
|
cat.avif
ADDED
|
requirements.txt
CHANGED
|
@@ -1 +1,5 @@
|
|
| 1 |
-
torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
gradio
|
| 3 |
+
spaces
|
| 4 |
+
numpy
|
| 5 |
+
torchvision
|