Spaces:
Sleeping
Sleeping
chore: remove zerogpu
Browse files- app.py +12 -69
- requirements.txt +1 -2
app.py
CHANGED
|
@@ -1,83 +1,26 @@
|
|
| 1 |
-
import os
|
| 2 |
-
# Set this before importing torch to avoid issues
|
| 3 |
-
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
|
| 4 |
-
|
| 5 |
import torch
|
| 6 |
import gradio as gr
|
| 7 |
import requests
|
| 8 |
-
from torchvision import transforms
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Download human-readable labels for ImageNet.
|
| 11 |
response = requests.get("https://git.io/JJkYN")
|
| 12 |
labels = response.text.split("\n")
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
model.eval()
|
| 17 |
-
|
| 18 |
-
# Preprocessing pipeline
|
| 19 |
-
preprocess = transforms.Compose([
|
| 20 |
-
transforms.Resize(256),
|
| 21 |
-
transforms.CenterCrop(224),
|
| 22 |
-
transforms.ToTensor(),
|
| 23 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 24 |
-
])
|
| 25 |
-
|
| 26 |
-
def predict_without_gpu(inp):
|
| 27 |
-
"""CPU-only prediction for fallback"""
|
| 28 |
-
if inp is None:
|
| 29 |
-
return {}
|
| 30 |
-
|
| 31 |
-
input_tensor = preprocess(inp).unsqueeze(0)
|
| 32 |
-
|
| 33 |
with torch.no_grad():
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
| 37 |
-
|
| 38 |
return confidences
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
import spaces
|
| 43 |
-
|
| 44 |
-
@spaces.GPU(duration=60)
|
| 45 |
-
def predict(inp):
|
| 46 |
-
"""GPU-accelerated prediction"""
|
| 47 |
-
if inp is None:
|
| 48 |
-
return {}
|
| 49 |
-
|
| 50 |
-
device = torch.device("cuda")
|
| 51 |
-
model.to(device)
|
| 52 |
-
|
| 53 |
-
input_tensor = preprocess(inp).unsqueeze(0).to(device)
|
| 54 |
-
|
| 55 |
-
with torch.no_grad():
|
| 56 |
-
output = model(input_tensor)
|
| 57 |
-
prediction = torch.nn.functional.softmax(output[0], dim=0)
|
| 58 |
-
prediction = prediction.cpu()
|
| 59 |
-
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
| 60 |
-
|
| 61 |
-
return confidences
|
| 62 |
-
|
| 63 |
-
print("Using GPU-accelerated prediction")
|
| 64 |
-
prediction_fn = predict
|
| 65 |
-
|
| 66 |
-
except Exception as e:
|
| 67 |
-
print(f"GPU initialization failed: {e}")
|
| 68 |
-
print("Using CPU-only prediction")
|
| 69 |
-
prediction_fn = predict_without_gpu
|
| 70 |
-
|
| 71 |
-
# Create the Gradio interface
|
| 72 |
-
demo = gr.Interface(
|
| 73 |
-
fn=prediction_fn,
|
| 74 |
inputs=gr.Image(type="pil"),
|
| 75 |
outputs=gr.Label(num_top_classes=3),
|
| 76 |
-
|
| 77 |
-
description="Upload an image to classify it using ResNet-34",
|
| 78 |
css=".footer{display:none !important}"
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
# Launch without problematic parameters
|
| 82 |
-
if __name__ == "__main__":
|
| 83 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
+
from torchvision import transforms
|
| 5 |
+
|
| 6 |
+
# Load model
|
| 7 |
+
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
|
| 8 |
|
| 9 |
# Download human-readable labels for ImageNet.
|
| 10 |
response = requests.get("https://git.io/JJkYN")
|
| 11 |
labels = response.text.split("\n")
|
| 12 |
|
| 13 |
+
def predict(inp):
|
| 14 |
+
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
with torch.no_grad():
|
| 16 |
+
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
| 17 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
|
|
|
|
|
|
| 18 |
return confidences
|
| 19 |
|
| 20 |
+
gr.Interface(
|
| 21 |
+
fn=predict,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
inputs=gr.Image(type="pil"),
|
| 23 |
outputs=gr.Label(num_top_classes=3),
|
| 24 |
+
examples=["lion.jpg", "cheetah.jpg", "cat.avif", "hot-dog.avif", "llama.jpg", "medieval_knight.jpg"],
|
|
|
|
| 25 |
css=".footer{display:none !important}"
|
| 26 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
torch
|
| 2 |
gradio
|
| 3 |
-
spaces
|
| 4 |
numpy
|
| 5 |
torchvision
|
| 6 |
-
Pillow
|
|
|
|
| 1 |
torch
|
| 2 |
gradio
|
|
|
|
| 3 |
numpy
|
| 4 |
torchvision
|
| 5 |
+
Pillow
|