Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
import torch
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
# --- Configuration ---
|
| 8 |
+
MODEL_NAME = os.getenv("MODEL_NAME", "google/gemma-2b-it") # Or "google/gemma-7b-it" if you have resources
|
| 9 |
+
DEVICE = "cpu" # Explicitly set to CPU
|
| 10 |
+
TORCH_DTYPE = torch.float32 # Use float32 for CPU for broader compatibility and stability
|
| 11 |
+
# For some newer CPUs, bfloat16 might offer speedups if supported
|
| 12 |
+
# but can sometimes be less stable or require specific setups.
|
| 13 |
+
|
| 14 |
+
# --- Model Loading ---
|
| 15 |
+
# This will run when the Docker container starts, or when the app is first imported.
|
| 16 |
+
# It might take a few minutes for larger models.
|
| 17 |
+
print(f"Loading model: {MODEL_NAME} on {DEVICE} with dtype {TORCH_DTYPE}...")
|
| 18 |
+
try:
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
+
MODEL_NAME,
|
| 22 |
+
torch_dtype=TORCH_DTYPE,
|
| 23 |
+
# low_cpu_mem_usage=True, # Can be useful for very large models on CPU, but might slow down loading
|
| 24 |
+
# device_map="auto" # 'auto' will select CPU if no GPU is available or if specified.
|
| 25 |
+
# Forcing CPU ensures no GPU attempts.
|
| 26 |
+
)
|
| 27 |
+
model.to(DEVICE) # Ensure model is on CPU
|
| 28 |
+
print(f"Model {MODEL_NAME} loaded successfully on {DEVICE}.")
|
| 29 |
+
except Exception as e:
|
| 30 |
+
print(f"Error loading model: {e}")
|
| 31 |
+
# If model loading fails, we can't serve requests.
|
| 32 |
+
# Depending on deployment, you might want to exit or handle this differently.
|
| 33 |
+
raise RuntimeError(f"Failed to load model: {e}") from e
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# --- FastAPI App ---
|
| 37 |
+
app = FastAPI(
|
| 38 |
+
title="Gemma CPU Inference API",
|
| 39 |
+
description="API to run inference on a Gemma model using CPU.",
|
| 40 |
+
version="0.1.0"
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
class GenerationRequest(BaseModel):
|
| 44 |
+
prompt: str
|
| 45 |
+
max_new_tokens: int = 50
|
| 46 |
+
temperature: float = 0.7
|
| 47 |
+
do_sample: bool = True
|
| 48 |
+
|
| 49 |
+
class GenerationResponse(BaseModel):
|
| 50 |
+
generated_text: str
|
| 51 |
+
input_prompt: str
|
| 52 |
+
|
| 53 |
+
@app.post("/generate", response_model=GenerationResponse)
|
| 54 |
+
async def generate_text(request: GenerationRequest):
|
| 55 |
+
"""
|
| 56 |
+
Generates text based on the input prompt using the loaded Gemma model.
|
| 57 |
+
"""
|
| 58 |
+
if not model or not tokenizer:
|
| 59 |
+
raise HTTPException(status_code=503, detail="Model not loaded or failed to load.")
|
| 60 |
+
|
| 61 |
+
print(f"Received request: {request.prompt[:50]}...") # Log snippet of prompt
|
| 62 |
+
|
| 63 |
+
try:
|
| 64 |
+
# Format prompt for instruction-tuned models (like gemma-*-it)
|
| 65 |
+
# This is a common format, adjust if your model expects something different
|
| 66 |
+
chat = [
|
| 67 |
+
{ "role": "user", "content": request.prompt },
|
| 68 |
+
]
|
| 69 |
+
formatted_prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
| 70 |
+
|
| 71 |
+
input_ids = tokenizer(formatted_prompt, return_tensors="pt").to(DEVICE)
|
| 72 |
+
|
| 73 |
+
print(f"Generating text with max_new_tokens={request.max_new_tokens}, temperature={request.temperature}...")
|
| 74 |
+
with torch.no_grad(): # Important for inference
|
| 75 |
+
outputs = model.generate(
|
| 76 |
+
**input_ids,
|
| 77 |
+
max_new_tokens=request.max_new_tokens,
|
| 78 |
+
temperature=request.temperature,
|
| 79 |
+
do_sample=request.do_sample,
|
| 80 |
+
# Add other generation parameters as needed: top_k, top_p, etc.
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
# Decode the generated text (only the new tokens)
|
| 84 |
+
# The generated output includes the input prompt, so we slice it off.
|
| 85 |
+
# For some models, the slice point might need adjustment.
|
| 86 |
+
# decoded_text = tokenizer.decode(outputs[0, input_ids.input_ids.shape[1]:], skip_special_tokens=True)
|
| 87 |
+
|
| 88 |
+
# A more robust way to get only the generated part, especially with chat templates
|
| 89 |
+
full_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 90 |
+
# Remove the prompt part. This depends on how apply_chat_template works.
|
| 91 |
+
# For many models, the prompt itself is part of the output of apply_chat_template.
|
| 92 |
+
# A simple way if the prompt is directly prepended:
|
| 93 |
+
if full_text.startswith(formatted_prompt.replace("<bos>", "").replace("<eos>", "")): # Handle potential BOS/EOS tokens in prompt
|
| 94 |
+
decoded_text = full_text[len(formatted_prompt.replace("<bos>", "").replace("<eos>", "")):]
|
| 95 |
+
else:
|
| 96 |
+
# Fallback or more sophisticated stripping might be needed depending on the template
|
| 97 |
+
# For Gemma's instruction-tuned template, this usually works by finding the assistant's turn start
|
| 98 |
+
assistant_turn_start = "<start_of_turn>model\n"
|
| 99 |
+
if assistant_turn_start in full_text:
|
| 100 |
+
decoded_text = full_text.split(assistant_turn_start, 1)[-1]
|
| 101 |
+
else:
|
| 102 |
+
# If not found, it might be that the prompt itself wasn't fully included in the output
|
| 103 |
+
# or the template is different. As a simpler fallback, we take the part after input_ids.
|
| 104 |
+
decoded_text = tokenizer.decode(outputs[0, input_ids.input_ids.shape[1]:], skip_special_tokens=True)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
print(f"Generated: {decoded_text[:100]}...")
|
| 108 |
+
|
| 109 |
+
return GenerationResponse(generated_text=decoded_text.strip(), input_prompt=request.prompt)
|
| 110 |
+
|
| 111 |
+
except Exception as e:
|
| 112 |
+
print(f"Error during generation: {e}")
|
| 113 |
+
raise HTTPException(status_code=500, detail=f"Error during generation: {str(e)}")
|
| 114 |
+
|
| 115 |
+
@app.get("/")
|
| 116 |
+
async def root():
|
| 117 |
+
return {"message": "Gemma CPU Inference API is running. POST to /generate for inference."}
|
| 118 |
+
|
| 119 |
+
# To run locally (optional, uvicorn in CMD will handle it in Docker)
|
| 120 |
+
if __name__ == "__main__":
|
| 121 |
+
import uvicorn
|
| 122 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|